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1.0 INTRODUCTION

In multichannel identification problems the outputs of
multiple channels (or sensors) are available, and it is desired to

identify the parameters of an analytical model to represent the
phenomena being observed via the channel outputs. Similarly, in

multichannel detection problems the outputs of multiple channels
are available, and it is desired to determine the presence (or
absence) of a desired signal component in the channel data. In

the combined problem of multichannel identification and detection
a model is estimated for the phenomena being observed via the

channel outputs, and the identified model is used to facilitate
the detection of a desired signal in the channel output data.

Multichannel identification and detection is thus referred to also
as model-based multichannel detection. In all of these problems

the channel data is available simultaneously over many channels of
the same type, or over many distinct channels (each channel

corresponding to a different sensor type).

This report is a summary of the work carried out in Phase I
of this program. Specifically, the development of state space

algorithms for model-based multichannel detection in the context
of surveillance radar system applications is addressed. In

surveillance radar systems (radar arrays) the channels correspond

to separate antenna apertures (or elements of a single aperture
array). The desired signal may or may not be present in the
channel output data at any given time. The data in each channel

generally includes noise (broadband interference) as well as
"clutter" (narrowband interference), with low signal-to-cluttbr

ratio and, possibly, low signal-to-noise ratio also. Model-based

detection methods must discriminate between the condition of
target embedded in clutter and noise, and the condition of clutter

and noise only.



Figure 1-1 illustrates a radar array system consisting of
multiple subarrays or array elements. The output of each subarray

(or each individual array element) is a complex-valued, scalar,
digital sequence, denoted as (xi(n)). The collection of the J scalar

sequences is arranged into a J-dimensional vector, {((n)}, which is

input to a multichannel processor (not shown in the figure).

Channel No. 1

Sn U

Analog A /D -Pre-n)

Receiver Converter Processor

> r

ChannelNo. J

Figure 1-1. -Radar array with J subarrays or individual elements.

In Phase I the multivariate (multiple input, multiple output)
state space model class was adopted to represent the multichannel

radar data, and new system identification techniques were applied

to estimate the model parameters. The modeling of the complex-

valued pre-processed radar signals for multichannel detection

using the state space model class is one of the contributions of

this work. State space models have been used in the context of

target tracking (where the detected radar signal is processed
further to estimate a trajectory) and for the determination of
weights in antenna array sidelobe canceling and related problems,

but not for multichannel detection. Model-based detection has
been carried out using the more-restricted time series models
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(Michels, 1991; Metford and Haykin, 1985), which are included

within the class of state space models and can be represented as

such.

The state space identification algorithm on which the

methodology developed in this program is based has several unique

features. Foremost among these, the algorithm operates on output

data directly to generate estimates of the parameters of a state

space model (without computing output correlation matrices). This

feature of the algorithm results in reduced dynamic range

requirements in comparison with state space algorithms that

operate on correlation matrices. The algorithm belongs to the

class referred to as subspace methods because the fundamental

operation of the algorithm is to decompose the vector space

spanned by the channel output data into signal and noise

subspaces. Implementation of this fundamental operation is

carried out using the QR decomposition and the singular value

decomposition (SVD), which are stable numerical techniques. This

identification algorithm is new; it is scheduled to appear in the

open literature late this year (Van Overschee and De Moor, 1993).

An important distinction in the context of radar system

applications is that the vector random processes which represent

the channel data are complex-valued processes in most cases. Most

time series techniques and models have been formulated for complex
as well as real processes. The same, however, cannot be said

about state-space techniques; state-space methods and results

available in the literature have been defined almost exclusively

for the case of real-valued processes, including the algorithm of

Van Overschee and De Moor (1993). In Phase I the Van Overschee-De

Moor algorithm was extended to the case of complex-valued

processes, which is the formulation presented in this report.

3



A computer simulation was generated as part of this program
to validate the methodology and the algorithms, and to carry out

simulation-based analyses. This software was exercised with

simulated multichannel data generated at RL, and the modeling and
identification results compare favorably with the results obtained

at RL using auto-regressive models.

In summary, the analytical and simulation results obtained in

this program indicate that the SSC algorithm and methodology for
model-based multichannel detection has the potential to result in

significant advances for radar system applications.

1. 1 oation

Vector variables are denoted by underscored lower-case

letters (including Greek letters). Matrices are denoted by upper-

case letters (including Greek letters). Some scalars (such as the
order of the state variable model) are denoted also by upper-case

letters. Vector spaces are denoted by upper-case script letters,
such as V. The expectation operator is denoted as E[-]; superscript

T and H are used to denote the matrix and vector transpose and the

Hermitian transpose operators, respectively; and an asterisk (*)
denotes the complex conjugate operator. IM denotes an M-
dimensional identity matrix, ON.J denotes an NxJ null (zero)

matrix, OM denotes an M-dimensional (square) null matrix, and M

denotes an M-dimensional zero vector. JAI denotes the determinant

of matrix A; A" denotes the inverse of matrix A; At denotes the

pseudoinverse of A; range(A) denotes the range (column space) of
A; rank(A) denotes the rank of A; A(ij) and ail are both used to
denote the (ij)th element of matrix A; and dim(V) denotes the

dimension of vector space V. A caret (A) over a variable denotes

an estimate of the variable, a bar (-) over a variable is used to
represent the mean of the variable, and ln(a) denotes the natural

4



logarithm of a. The symbol I denotes "is orthogonal to;" n
denotes intersection of two vector spaces; 9 denotes the direct

sum of vector spaces; V denotes "for all;" and e denotes "is an

element of."

Where possible, the symbols used herein to represent
variables match the symbols used by Michels (1991) to facilitate
enhancing the software available at Rome Laboratory (RL) with the
techniques developed in this program. This philosophy forces. the
use of non-standard symbols to represent the parameters of a state
variable model. Of course, notational convention should not be a
major issue provided all symbols are defined appropriately.

However, it is important to mention this point in order to avoid
possible confusion on the part of the reader.

12. 2tm8r Overview

An introduction to the model-based multichannel detection
problem is presented in Section 2.0. This section includes also
the definition of the state space model class and several related
concepts, including the backward model associated with a forward
model, and the innovations representation for a random process.
The parameter identification algorithm is presented in Section

3.0, and the algorithm proof provided differs significantly from
the proof given by Van Overschee and De Mior (1993). In fact, the

algorithm proof given here is simpler and easier to follow. As
mentioned earlier, this algorithm is the backbone of the

Scientific Studies Corporation (SSC) multichannel detection

approach. Kalman filtering of the channel data to generate the

innovations sequence is discussed in Section 4.0. The innovations
sequence is fed to a likelihood ratio detector which generates the

detection decision, as described in Section 5.0. A discussion of

the software generated in the program is presented in Section 6.0,



along with several simulation results. Section 7.0 includes the
main conclusions and recommendations borne out of this Phase I.

Appendix A presents a method~ology for generating the state space
representation of three conventional time series models (moving-

average, auto-regressive, and auto-regressive moving-average).

Appendix B presents the quotient singular value decomposition

(QSVD) for matrix pairs, as required in Section 3.0.
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2.0 MODEL-BASED MULTICHANNEL DETECTION

The model-based approach to multichannel detection involves

processing the channel data tw identify the parameters of a model

for the multichannel system, and determination of a detection

decision utilizing the identified parameters to filter the channel

data. Model parameters can be identified on-line, as the.channel

data is received and processed. Alternatively, the model

parameters can be identified off-line for various conditions and

stored in the processor memory to be accessed in real-time as

required.

There are two general classes of linear parametric models for

vector random processes: time series models and state space

models. Time series models include moving-average (MA) models,

auto-regressive (AR) models, and auto-regressive moving-average

(ARMA) models. State space models are more general than time

series models; in fact, MA, AR, and ARMA models can~be represented

by state space models (Appendix A). In the state space
literature, the determination of the model parameters based on

output data (and, sometimes, input data also) is referred to as a

stochastic identification or a stochastic realization problem.

Time series models have been applied to the multichannel

detection problem, and the performance results obtained provide

encouragement for further research (see, for example, Michels,

1991, and the references therein). The results obtained by

Michels (1991) assume that the multichannel output process can be

modeled as a vector AR process. Given the generality of state-

space models and the wealth of results available in the state-

space literature, the state space model class was selected in

Phase I to represent the multichannel signals in the model-based

multichannel detection problem for radar systems.

7



In the case of time series models, two types of model

parameter estimation algorithms have been established in the

literature: (a) algorithms which operate on channel output

correlation matrices, such as the extended Levinson algorithm

(Anderson and Moore, 1979), and (b) algorithms which operate on

the channel output data directly (without the need to compute

channel output correlation matrices), such as the Levinson-

Wiggins-Robinson algorithm (Wiggins and Robinson, 1965) and the

Strand-Nuttall algorithm (Strand, 1977; Nuttall, 1976).

In the case of state-space models, most of the existing

algorithms operate on channel output correlation matrices, such as

the stochastic realization approach developed by Akaike (1974,

1975). This limitation is due, in a large part, to the fact that

the structure of state space models is more general than the

structure of-time series models, and the increase in generality

has presented a significant challenge to the development of

algorithms that operate on channel output data directly. Very

recently, however, Van Overschee and De Moor (1993) have defined a

state space stochastic realization algorithm which avoids the

computation of channel output correlation matrices. Furthermore,

this algorithm can be implemented using robust numerical

techniques. The Van Overschee-De Moor algorithm was adopted in

Phase I to solve the parameter identification problem.

2.1 Multiehannal Dot.ction

Detection problems in the context of radar systems can be

postulated as hypothesis testing problems, where a choice has to

be made among two or more hypotheses. The detection problems

addressed in this report involve the following two hypotheses:

8



H0 : Desired signal is absent

HI: Desired signal is present

H0 is referred to as the null hypothesis, and H0 is the alternative

hypothesis. The model-based approach to the multichannel

detection problem is couched on the assumption that the vector

random process at the output of the channels can be represented as

the output of a linear system (filter) under each of the two

hypotheses, and that a unique parametric model corresponds to each

hypothesis. Furthermore, the two parametric models (one for each

of the two hypotheses) must be sufficiently different to allow

selection of the correct hypothesis by the evaluation of measures

that are sensitive to those differences.

A particular measure that has produced robust experimental

results in the model-based detection context (Metford and Haykin,

1985) is the log-likelihood ratio (LLR) test. This test is the

result of solving the hypothesis testing problem using the Neyman-

Pearson criterion. The LLR test in the context of model-based

detection is calculated using the innovations sequence at the

output of each of the two linear filters. This presents practical

and implementation advantages.

Figure 2-1 illustrates the architecture of an on-line

innovations-based multichannel detector. In the case of a radar

array system, each of J radar receiver channels collects the

electromagnetic energy arrivinc at its aperture, and processes it

to generate a discrete-time random sequence, denoted as {xi(f)},
which contains the desired information. The J random sequences

(xi(n)} are represented in vector form as {[(n)}. Michels (1991) has

formulated the binary detection problem for multichannel systems.
Specifically, the null hypothesis, H0 , corresponds to the case of

9



clutter and noise present in the observation process {•(n)}, and the
alternative hypothesis, H1 , corresponds to the case of signal,

clutter, and noise present in the observation process {•(n)}. That

is, the detection decision must be made between the following two

models,

(2-1a) HO: 1(n) = g(n) + &(n) n no

(2-1b) HI: n + + n no

where no denotes the initial observation time, {Q(n)} denotes the

clutter process, {w.(n)} denotes all the array channel noise
processes, and {•(n)) denotes the desired signal (target) process.

In the model-based approach pursued herein, a distinct state
variable model is associated with each of the two hypotheses, and

a Kalman filter is designed for each model. Each Kalman filter
processes the observation sequence {[.(n)} to, generate a vector
innovations sequence: {[(nIH0 )) denotes the innovations sequence at
the output of the null hypothesis filter, and {r(nlH1 )} denotes the

innovations sequence at the output of the alternative hypothesis
filter. These innovations sequences are used in a likelihood

ratio test with a pre-stored threshold to carry out the detection

decision.

As indicated in the detection configuration of Figure 2-1,
the two filters can be determined in real-time by processing the
observation sequence for a prescribed time interval. This
approach provides the most adaptability, but may present a large

computational burden for some applications. It also presents
conceptual challenges, such as real-time determination of model
order for each of the two filters. Alternatively, the filter
design can be carried out off-line for each of the two hypotheses,
and the resulting filter design implemented in the real-time

10



configuration. This alternative approach is less robust to

changes in the operational environment, but requires a simpler

processor architecture, which is important in many real-time

applications. Careful design of the filters off-line using

adequate simulated and real data can lead to acceptable

performance. Also, many pairs of fixed filters may be designed to

cover distinct operational conditions. The filter for the

alternative hypothesis will be of higher order than the filter for

the null hypothesis because the observation process for the

alternative hypothesis has more information (the signal

component).

Innovations

{(n)Model Lkelhood Detecton

"Identificatlon Calculation Calculation

I Innovations Threshold
Alternative Sequence
Hypothesis

Filter {f(n I H 1))

Figure 2-1. Innovations-based multichannel detector with on-line
parameter identification.

Michels (1991) has developed a likelihood ratio calculation

and detection decision model which are compatible with the

formulation adopted herein. Both of these capabilities are

1I



available at RL, and, where appropriate, the methodology presented

in this report is compatible with these capabilities.

2.2 Sata .ace Model

The class of multiple-input, multiple-output state variable

models can represent effectively the channel output process for

radar applications. Consider a discrete-time, stationary,
complex-valued, zero-mean, Gaussian random process {x(n)) defined as

the output of the following state space model representation for

the system giving rise to the observed process:

(2-2a) y(n+1) - Fy.(n) + G.U(n) n > no

(2-2b) I(n) = HHy(n) + DHw(n) n no

(2-2c) E[y(no)] =QN

(2-2d) E[.(no),yH(no)] = Po

Here n = no denotes the initial time (which can be adopted as 0

since the system is stationary). Also, y(n) is the N-dimensional

state of the system with y(no) a Gaussian random vector; LL(n) is the
J-dimensional, zero-mean, stationary, Gaussian, white input noise

process; and w.(n) is the J-dimensional, zero-mean, stationary,

Gaussian, white measurement noise process. The output (or
measurement) process {x(n)} is also a J-dimensional vector process.

Matrix F is the NxN system matrix, G is NxJ input noise

distribution matrix, HH is the JxN output distribution matrix, DH

is the JxJ output noise distribution matrix, and Po is the

correlation matrix of the initial state. All these matrices are
time-invariant. Matrix Po is Hermitian and positive definite.

12



System (2-2) is assumed to be asymptotically stable, which
means that all the eigenvalues of matrix F are inside the unit

circle. Also, system (2-2) is assumed to be reachable and

observable, which implies that the dimension N of the state vector

(also the order of the system) is minimal (Anderson and Moore,

1979). That is, there is no system of lesser order which has
identical input/output behaviour. The output distribution
matrices are defined with the conjugate operator in order to have

notation consistent with that of the single-output system case,
where both H and D become vectors, and nominally vectors are

defined as column vectors.

The input noise process correlation matrix is given as (all
matrices defined hereafter have appropriate dimensions)

(2-3a) E(u(k)uH(k)] = Ruu(0) = a k ; no

(2-3b) E•u(k)UH(k-n)]= Ruu(n) = [0] k;- no and n * 0

and the output noise process correlation matrix is given as

(2-4a) E[.(k).WH(k)] = Rww(0) = C k Ž no

(2-4b) E[.f(k)AH(k-n)] = Rww(n) = [0] k no and n •*0

Notice that matrices Q and C are Hermitian (that is, QH=Q, and
CH=C). Matrix Q is at least a positive semidefinite matrix since

it is an auto-correlation matrix (all the eigenvalues of a
positive semidefinite matrix are non-negative) , and matrix C is
assumed to be positive definite (this can be relaxed to positive

semi-definite, but positive definiteness is more realistic since
in the radar problem A(n) represents channel noise and other such

noise processes which are independent from channel to channel).

13



In the most general form for this model the input and output

noise processes are correlated, with a cross-correlation matrix

defined as

(2-5a) E[&L(k).'(k)] - Ruw(O) - S k 2 no

(2-5b) E[u(k)'(k-n)] - Ruw(n) - [0] k > no and n $0

In general, matrix S is not Hermitian. Both the input and output

noise processes are uncorrelated with the present and past values
of the state process, and this is expressed in terms ot cross-

correlation matrices as

(2-6a) E[,(k)uH(k-n)] = Ryu(n) = [0] k ;- no and n a 0

(2-6b) Ey(k)wH(k-n)] = Ryw(n) [0] k tno and n>0

The correlation matrix of the state is defined as

(2-7) EX(rn)Y.H(n)] = Ryy(n) = P(n) kýrno and n>l0

It follows from (2-2a) and the above definitions that the state
correlation matrix satisfies the following recurrence relation,

(2-8) P(n+l) = FP(n)FH + GQGH n > no

In general, matrix P(n) is Hermitian and positive definite. Since

system (2-2) is stationary and asymptotically stable, and since
matrix Q is positive definit-, then the following steady-state

(large n) value exists for the recursion (2-8):

(2-9) P(n+l) = P(n) = P
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Under steady-state conditions Equation (2-8) becomes a Lyapunov
equation for the steady-state correlation matrix, denoted as P:

(2-10) P - FPFH + GQGH

The conditions for steady-state also insure that the solution to

Equation (2-10) exists, is unique (for the selected state space

basis), and is positive definite (Anderson and Moore, 1979).
Matrix P is unique for a given state space basis. However, if the

basis of the input noise and/or the basis of the state are changed

by a similarity and/or an input transformation, then a different

state correlation matrix results from Equation (2-10).

The correlation matrix sequence of the output process {X(n)} is

defined as

(2-11a) EE•(k)xH(k-n)] = Rxx(n) = An Vk and n_>0

(2-11b) Rxx(-n) = RH (n) V n

For a system of the form (2-2), the correlation matrix Rxx(n) can be

factorized as follows,

(2-12a) An = Rxx(n) = HHFn-iF n > 0

(2-12b) An = Rxx(n) = ["ItFn'I]HH = r4,'[FH]nl'H n < 0

where Fn'1 denotes F raised to the (n-1)th power and r denotes the

following cross-correlation matrix

(2-13) F = E[X(n)xH(n-1)] = Ryx(1) = FP(n)H + GSD V n > 0
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The correlation matrix sequence factorization in Equation (2-12)

is the key to most correlation-based stochastic realization

algorithms. The zero-lag (n=o) output correlation matrix is

(2-14) Rxx(O) - HHp(n)H + DHCD = Ao

Matrix Rxx(O) is Hermitian and at least positive semidefinite. In

steady-state, P replaces P(n) in Equations (2-13) and (2-14).

As can be inferred from the above relations, the system
parameters {F, G,H,D,Q, C,S,P,rl completely define the second-order

statistics '(the correlation matrix sequence {Rxx(n)}) of the output

process, and it is said that system (2-2) realizes the output

correlation matrix sequence. Conversely, the second-order

statistics of the output process provide sufficient information to

identify the system parameters, although not uniquely. Since the

output proces-s has zero mean and is Gaussian-distributed, the

second-order statistics define the process completely.

From the system identification (stochastic realization) point

of view, the problem addressed herein can be stated as follows:

given the output data sequence {[(n)} of system (2-2), estimate a
set of system parameters (F, G, H, D, Q, C, S, P, r) which generates the

same output correlation matrix sequence as system (2-2).

Furthermore, the identified parameter set must correspond to a

system realization of minimal order (with state vector Y of minimal

dimension).

It is well known (Anderson and Moore, 1979) that there can

exist an infinity of systems (2-2) with the same output

correlation matrix sequence. The set of all systems that have the

same output correlation matrix sequence is an equivalence class,

and any two systems belonging to the set are said to be

16



correlation equivalent- (Candy, 1976). For example, the output

correlation matrix sequence remains invariant to a similarity

transformation applied to the state vector. Similarly, the output
correlation matrix sequence remains invariant also to a non-

singular transformation applied to the input noise and/or to the
output noise. As shown by Candy (1976), the equivalence class of

correlation equivalent systems is defined including other

operations besides a change of basis.

Based on these comments, the solution to the system

identification problem is not unique. It is also true that most
of the possible system parameter solutions do not possess

desirable properties. There is, however, a solution which has
several features of importance. This solution is referred to as
the innovations representation for system (2-2), and is discussed

in Section 2.3.

In general, the system matrix parameters resulting from the
identification algorithm will be represented in a different basis,
and should be denoted with a different symbol (say, F, instead of

F, etc.); nevertheless, the same symbol will be used in this

report in order to simplify notation.

Several definitions and notation associated with the input

/output behaviour of system (2-2) are important. Consider first
the L-term (finite) controllability matrix of system (2-2), CL;

this matrix is defined as an NxJL partitioned matrix of the form

(2-15) C-[G FG ... F-"G I

As is well-known, matrix CL has rank N (equal to the system order)

for Lý:N. The controllability matrix maps the input space onto

17



the state space. Analogously, the L-term observahility matrix of

system (2-2) is the following JLxN partitioned matrix,

H H"

(2-16) 0L HHF

LHF

and the rank of matrix OL is equal to N also for L ; N. The

observability matrix maps the state space onto the output space.

Classical realization theory for the deterministic case is based

on the fact that a block Hankel matrix made up of the impulse

response matrices (Markov parameters) of a deterministic system

can be represented as the product of the observability and

controllability matrices. That is,

(2-17) HL.L - OLCL

where HL.L is a JLxJL deterministic Hankel matrix with the impulse

response matrix A(I+j-1) as its (ij)th block element (a block Hankel

matrix is a matrix in which the, (i,j)th block element is a

function of i+j). This result follows from the definition of the

impulse response matrix sequence,

(2-18) A(n) - HH Fn'G n 2 1

Notice that the factorization of the impulse response matrix

sequence in Equation (2-18) is very similar to the factorization

of the correlation matrix sequence in Equation (2-12).

Associated with system (2-2) is a backward time model which
is defined from the system model (2-2). Backward time models play
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a role in the formulation )t A largo ola,% ot 'c,4tio

realization alqorithms, The backwal1 time modol to • ystem

is defined as a diacrete-time, 4ationary, complx-vA•otu1, ;or•,-

mean, Gaussian random process with a state space toproaentation o

the form (Faurre, 1976)

(2-19a) s(n) = FHA(n+!) + X(n)

(2-19b) I(n) = rH&(n) + y,(n)

where I(n) is the N-dimensional state vector, 4(nl) is the N-
dimensional input noise vector, and y(n) is the J-dimensional

output noise vmctor. Both noise vectors are uncorrelated in time

(white), have mean equal to zero, and are Gaussian-distributed,

The L-term observability matrix for the backward system (2-19) is

the following JUxN partitioned matrix,

(2-20) DL - F

Also of interest is the Hermitian of DL with the block columns in

reversed order. That is,

(2-21) B = DL= [F-Ir ... Fr r]

where the dual-point arrow over matrix indicates reversal in

the order of the block columns. Notice that matrix !BL is like a

controllability matrix for the matrix pair (F, F) in reverse block
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oalu~mfl order. Thug, mAtrtx lk. im nrorovrdd to 1%oron ai tito L"'rena

reversed dual ~l t iymatrth

In the gantext at Aohasrio realiatton t-hotys the

signifioanoe )f the b~oward model tallow* from Kqtation'()

and the Kankel, matrix of out-put oo rslAtion Imatrit'e, A* ;ihown
nx9•, Define a &toha1t14 Hankel motr•xr :)r(sL A the foltniwo

JLAJL block matrix,

A, As ,, AL

Al A3 AW

AL AL41  .. ARL-,

where the block elements (A,) *re the elements of the output

correlation matrix sequence, Equation (2-12) It follows from

Equations (2-12), (2-16), and (2-22) that

(2-23) (,(,L M Lk~

This equation is fundamental to stochastic realization algorithms,

and allows the dpplication of classical deterministic realiiAtion

algorithms to the stochastic realiz-ation problem formulated with

output correlation matrices. It also provides insight into the

stochastic realization algorithm presented in Section 3,0, even

though the algorithm does not require computation of the output

c. :relation matrix sequence,

Other important matrices in stochastic realizdtion theory
include the JLxJL "future" and "past" block correlation matrices,

These matrices are the correlation matrices of future and past

output block vectors defined as
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i(n÷ )
(a-a4) *• ,,(n~n.Li) * (•1

li(n.L~¶)

&+L)
g(n+L)

* " (n+L~n L2L ,1) - (flL+I)

With these cletinitions, the futire AIId pPAt block woreralation

matrices are given by the following JLxJL matricest

A0 A.1 ,,, A1,L
HI• 1 A, ,At ,, A,.t.

AL. 1  ALt.."" A0

A0 A1  ... AO

A1,1 '\2,L" A0

where 4 :L,L and 4 :L,L are the future and past block correlation

matrices, respectively. Another matrix of interest is the block

cross-correlation matrix between the future and Lhe past, which is

defined as
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AL  AL, I , AI

(~2)AU 14  AL ... A2

AI3 L, AVL ... AL

Notice that the block ,roam-correlation "atrix I4L,PL &01 13 .quA tO

the stochastic block Hankel with the block columns in roverse
order, am indicated In rquation (2-20). For LkN, oquations (2-

20-Q(2-23) define the correlation structure of system (2-2), 111
fact, the stochastic realiaation algorithm ot Akaike (1974, 1975)

tI based an theme block correlation matrices,

3, 3 ?nftva~iana m pl~emantatien

The innovations ropresentation is a very powerful concept in
the theory of linear stochastic systems due to its simplicity and

its characteristics, Several texts and papers discuss this

concept in detail; in particular, Anderson and Moore (1979)
provide a lucid presentation, The discussion herein is adapted

mostly from Anderson and Moore (1979),

The innovations representation for a system (2-2) is a

discrete-time, stationary, complex-valued, system of the form

(2-29a) s(n+1) w FI(n) + Kf(n) n > no

(2-29b) X(n) = HH4(n) + L(n) n 2 no

(2-29c) Q(nO) a QN

(2-29d) E[Q(no)eH(no)] = H(no) - Flo - [0]
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(2-29) E[a(n),H(n)] = rl(n) n ' no

(2-29f) rl(n)- l as n -oe

(2-299) Rz(n) Rx(n) V n

here L(n) is the N-dimensional state, ,(n) is the J-dimensional

o'itput, and the input process (IL(n)) ia the innovations prncess for

system (2-2). That is, (&(n)) is a J-dimensional, zero-mean, white

Gaussian process with correlation matrix structure givon as

(2-30a) .a E[g(k)&H(k)j a Rt=(O) - HHI1H , A.- HHInH k k no

(2-30b) Ej&(k)gH(k-n)] a (0] k no andi n*0

The state correlation matrix FI(n) has a steady-state value because

the system is asymptotically stable (stationary), and the steady-
state value, n1, is obtained as the limiting solution to the

following recursion

(2-31a) n(n+l) • Ffl(n)FH + [FfI(n)H - F] [Ao- HHfl(n)H]"1 [FrI(n)H - F1H n Z no

(2-31b) n(n.) = ro = [0)

Matrix K in Equation (2-29a) is given as

(2-32a) K -[F- FnIH] W1 - (r- Fn1H] (A.- HHlH]"1

(2-32b) K - GSD Q1 - GSD[Ao- HHH]"1

where the second relation follows from the definitions of r in

Equation (2-13) and of Q in Equation (2-30a). In the cases where
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the inverse of the correlation matrix 11 does not exist, its

pseudoinverse is used instead in Equations (2-31) and (.1-32).

Matrices F, H, A0 , and r are as defined for syattem (2-2)

That is, system (2-29) is related to system (2-2). In fact,

system (2-29) as defined above is the steady-state innovations
representation for system (2-2). This representation has the

following important features.

(a) First and foremost, the correlation matrix sequence of
(Z(n)) is .equal to the correlation matrix sequence of

(&8)), as indicated in Equation (2-29g) . That is, the
processes (Z(n)) and (1(n)) are correlation equivalent,
This means that the innovations representation is a

valid solution to the system identification problem

defined herein.

(b) Of all the correlation equivalent representations for

a given output correlation sequence, the innovations
representation has the smallest state correlation
matrix, n (smallest is meant in the sense of positive

definiteness; that is, nI is smaller than r12 if n2 -

n, is a positive definite matrix). This property of

the iw•ovations model is significant because the state

correlation matrix is a measure of the uncertainty in

the state.

(c) The innovations representation is directly related to

the steady-state Kalman filter (in the one-step

predictor formulation) for system (2-2). In fact, the

steady-state Kalman filter for system (2-2) is
available immediately upon definition of the steady-

state innovations representation, and viceversa.
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Specifically, matrix K of Equations (2-29a) and (2-

31) is the steady-state Kalman gain of the optimal

one-step predictor for system (2-2). This is true
provided that the eigenvalues of F-KHH are stable.

Thus, the innovations model is defined as above for

all processes of the form (2-2), but the steady-state

Kalman filter is defined only if F-KHH is stable,

(d) The process (&(n)) in Equations (2-29) and (2-30) is

correlation equivalent to the innovations sequence of

system (2-2), which is the reason for referring to

system (2-29) as the "innovations representation" for-

system (2-2).

(e) The innovations model (2-29) is causally invertible.

This means that the present and past of the process
(L(n)) can be constructed from the present and past
values of the output process (Z(n)). The converse

statement is true also; that is, any causally

invertible model is an innovations representation for

some system. Causal invertibility of system (2-29)

can be demonstrated easily. From Equation (2-29b),

(2-33) L(n) - HH.Q(n) + ,y(n)

Substituting this expression for ,(n) into Equation (2-

29a) results in

(2-34) Q(n+1) - [F - KHH]u(n) + KX(n)

These relations demonstrate the causal invertibility

of the innovations model (the input and output

variables have traded places).
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(f) Matrix F-KHH in the inverted innovations model is a

stable matrix. This follows from the fact that the
matrix pair (F, H) is observable, and implies that the

Kalman filter for system (2-2) is stable also.

(g) The transfer function of the innovations model (2-29)

is minimum phase. This is related to the fact that

the innovations model is correlation equivalent to

system (2-2), and second-order moment information (the

output correlation matrix sequence) does not contain

any phase information.

(h) The innovations representation for a system of the

form (2-2) is unique. Given that the innovations
representation has the same output covariance sequence
as system (2-2), the fact that it is unique eliminates
searching for other representations for system (2-2)
with the properties listed herein.

(i) The innovations model (2-29) can be computed from the

output correlation matrix sequence of system (2-2).

This fact simplifies the parameter identification

problem because the set of matrix parameters that must
be estimated is reduced to just five: (F, H, r, n,
Ao) (given these parameter matrices, the innovations

covariance, Q, and the Kalman gain, K, are obtained

using Equations (2-30a) and (2-32a), respectively).

All the features listed above are of relevance to the

identification approach presented in Section 3.0 because the

selected parameter identification algorithm generates the
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innovations representation for the given output correlation matrix

sequence, following feature (i).

The backward model has an associated backward innovations
model which is defined by F, r, and the backward Kalman gain.

Most of the features (a)-(i) that describe the forward innovations

model are valLd also for the backward innovations model, with a

notable exception of feature (b), which needs to be replaced by

the following statement: For each valid correlation equivalent

representation for a given output correlation sequence, the state

correlation matrix is smaller than the inverse of the state

correlation matrix for the backward innovations model. More
specifically, let nb denote the state correlation matrix for the

backward innovations model in steady-state conditions, and let 1

denote the state correlation matrix for any valid correlation

equivalent representation of an output correlation sequence.

Then, nl _ L is a positive definite matrix. This result provides

an upper bound for the state correlation matrix of a correlation

equivalent representation, and can be combined with the lower

bound established by property (b) of the forward innovations model

to give

(2-35) r 5z: *

As before, the inequality between two matrices is intended in the

sense of positive semi-definiteness of the matrix difference.
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3.0 MULTZCNANNUL SYSTEM XDENTZFICATION

Identification of the model parameter matrices (F,H,r, n,Ao} is

carried out using the algorithm of Van Overschee and De Moor

(1993), extended to the case of complex-valued data. The Van

Overachee-De Moor algorithm is based on the predictor space

concept of Akaike (1974; 1975), the correlation equivalence

results obtained by Faurre (1976), and the balanced stochastic

realization approach of Arun and Kung (1990). The algorithm

approach is presented herein from a viewpoint which is different
from, and simpler than, the presentation given by Van Overschee

and De Moor (1993).

3. 1 Output fata-flad Alaorithm

In comparison with alternative stochastic realization

techniques, the Van Overschee-De Moor algorithm adopted herein has

several advantages for multichannel detection applications, as

listed next.

" Reduced dynamic range with respect to algorithms which

require generation of the output correlation matrix

sequence (correlation matrices are estimated as sums of

products of the data sequence elements, which increases

the dynamic range) . As such, the algorithm can be
viewed as a "square-root" algorithm.

"* Identifies the parameters for a model in the state-space

class, which is more general than the time series class.

"• Belongs to a class of algorithms referred to as
"subspace methods." Subspace methods involve the

decomposition of the space spanned by the output process
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into two orthogonal subspaces: one subspace is the space

spanned by the "desired component," and the other

subspace is spanned by the "noise component." The MUSIC

algorithm (Schmidt, 1979; 1981) , for example, also

belongs to the class of subspace methods.

0 An approximately balanced (in the stochastic sense)

state space realization is generated, thus providing a

built-in and robust mechanism for model order selection.

6 Identifies the innovations representation of the system,

and generates the Kalman gain directly, without having

to solve a nonlinear discrete matrix Riccati equation.

* Approach differs from others in that the states of a

Kalman filter for the given sequence are identified

first, and then the model parameters are estimated via

least-squares.

* Implementation of the algorithm involves the QR

decomposition and the quotient SVD (QSVD; also known as

the generalized SVD), which are stable numerical
methods. Furthermore, the QSVD is applied to matrices

of small dimensions.

An algorithm for implementing the QSVD is given in Appendix B for

the specific conditions presented in this section.

Consider the channel output sequence {•(n)}. For simplicity,
let the initial time no=O. This can be done without loss of

generality because the system is stationary. Now define a block
Hankel matrix XOL.I with output sequence vectors assigned as block

elements according to the rule XOL.l(ij)=j(i+j-2); that is,
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x(O) j(1) 1(2) ... x(M-1)

&(1) 2L(2) 4(3) ... A(M)

(3-1) XOL.1 1 X(2) 1(3) 2(4) ... x(M+l)

xj(L-1) xi(L) xj(L+l) .., x(L+M-2)

Here the first subscript denotes the time index of the first

element of the first row, and the second subscript denotes the

time index of the first element of the last row. Matrix XO.L. has

JL rows and M columns, with M >> JL, and JL> N (recall that N is

the system order and J is the number of channels). The block row

dimension, L, must be selected so that LŽN+ 1. Similarly, define

another JLxM block Hankel matrix XL.2L.1 with output sequence vectors

assigned as block elements according to the rule XL,2L.1(ij) =(i+j-2+t);

that is,

x()K(L.l) &(L+2) ... x(L+M- 1)

x(L+l) xL(L+2) x(L+3) 2..x(+M)

(3-2) XL.2L.1 - x(L+2) x(L+3) x(L+4) ... x(L+M+1)

.x(2L-1) xi(2L) x.(2L+l) ... 1(2L+M-2)

Matrices XO.L.1 and XL.2L.1 represent the "past" and the "future",

respectively, of the output process. Also let X- denote the

vector space spanned by the past of the process (x(n)}, and X+

denote the vector space spanned by the future of the process.
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The algorithm is based on the decomposition of the process
future (as represented by matrix XL,2L.1) into two orthogonal

subspaces (herein orthogonality is invoked under the standard

unitary inner product for complex vector spaces, with identity

metric). In such a decomposition, one subspace is the space
spanned by the process past, X- (as represented by matrix X0L.1I),

and the second subspace is the space spanned by the noise process.
Let 'W denote the space spanned by the noise process {ff(n)}. Then,

the desired decomposition of X+ is as follows:

(3-3) X+ = X- e W4)

where E denotes the direct sum, and X- I W12 (since the present

state and the present measurement noise are uncorrelated) . In
matrix notation, the desired decomposition of XL.2L.1 is expressed as

(3-4) XL,2L-1 = XFRP + XFj±P

where the JLxM matrix XFiP is the projection of the row space of

XL,2L.1 (the future) onto the row space of XO.L. (the past), and the
JLxM matrix XFpP is the projection of the row space Of XL.2L.1 onto

the complement of the row space of XOL.l. Akaike (1974; 1975) has

demonstrated that since the order of the state space model is N,

the projection of the future onto the past is an N-dimensional
subspace of the M-dimensional space to which the rows of XL.2L.1

belong. Thus, the rank of matrix XFiP is equal to the dimension of

the subspace spanned by the projection of the future onto the

past. Furthermore, the structure of this subspace (and of its

matrix representation) determines the characteristics of the state
space model (such as model order) . Analogously, matrix XFLP

determines the characteristics of the noise subspace.
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The decomposition (3-4) can be carried out using a matrix

operator referred to as a projector (Pease,. 1965) Let S, and S2

denote two orthogonal subspaces of $ such that S, ED$2 = S. A

projector of S onto S, is a matrix P1 such that

(3-5a) P I1Y = Y- V Yl eS 1

(3-5b) P1¥2 = n V .2 e S 2

Projectors can be defined also as operating on row vectors,

instead of on column vectors. The property which characterizes

projectors is idempotency (that is, P is a projector if and only
if p2 p).

Let V denote the M-dimensional subspace defined by the L rows

of XL2L.0 (recall that L<<M), and let P. denote the MxM projector

of V onto the.subspace X-. It follows that

(3-6) XL2L.1P =- XFgP

Thus, availability of the projector P. allows the decomposition of

the future data matrix because XFJP can be determined from

Equations (3-4) and (3-6). Projector P. is determined from matrix

XOL.1 as

(3-7) P. - -L.IXL1- 0,L-i(XOL.1XOL.1 X01L1

This projector will decompose the future data matrix into the

desired components. However, Equation (3-7) imposes a large

computational burden, and furthermore, it effectively involves the

calculation of the output correlation matrix sequence and of the

inverse of a large matrix with correlation matrix sequence

elements as its block elements. Fortunately, the QR decomposition
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can be applied to determine the subspace decomposition (3-4) and
also to determine the prcjector P., if required, The QR

decomposition is a computationally efficient and numerically
robust approach to address this problem (Dongarra et a1., 1979),

Consider now the block Hankel data matrix X0L,2I, This matrix

is a 2JLxM block column matrix made up of a concatenation of the

past and future Hankel matrices,

(3-8) XO,2L -1 -[ ? L- ]L XL2L.•1 I

Now apply the Hermitian operator to a "normalized" matrix X02 L.-,

and carry out a QR decomposition on this matrix (the normalization
factor is required to avoid increase in dynamic range and to match
the formulation which is based on the correlation matrix

sequence). This results in

H [ RH
(3-9a) 20 xH XH.....

fO- LM 1 L ( M-2JL),2JL
H H

RA RB

H
(3-9b) =A- 1 I[ ()A Oc [0]1 HC

[0] [0] _

Matrix 0 is an MxM unitary matrix, submatrices (A and Q8 are

dimensioned MxJL, and submatrix QC is dimensioned Mx(M-2JL).

Matrix RH is a 2JLx2JL upper-triangular matrix with rank equal to
the rank of matrix X 0,2 L.-.1 All the submatrices of R are
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dimensioned JLxJL, and submatri(ea mR and Are A•.ao %ippor-

triangular. Since martrix 0 is "nitary# the following relations

are truet

(3-1•) 00N - AA 0 + ÷ 011 + 0O H

0 A A 0A 0 1 qA M

(3-11) 0 oH a 0 H0 A 010* 8 QHo " [(01 IJL 101 "M

0C 0A 0 No (0) [ 01 1 V IA JL

Consider now the conjugate transpose of Equation (3-9) , after
eliminating O since it is multiplied by a zero-valued matrix;

that is,
Sx. - ---- F--

X0,20 X01-1 10 OH
(3-12) RA ...J.R.]. HA

The following two equations are obtained immediately from the

partitioning in Equation (3-12),

X0,L'___ = H
(3-3) RAQA

(314) XL2L -RBQH + R0QH

Equation (3-13) is a QR decomposition of XoL.1 (recall that RA is

lower triangular), and Equation (3-14) is a subspace decomposition
of XL2L.1. As shown next, (3-14) is the desired decomposition of
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XLULI1 The projector P. ia determined from Mquations (J-7) and (3-

13) as

(3-15) P. U AAH

it also follows that the projector of V onto W (the noise

subspace) is

With Equations (3-11) and (3-15) it is easy to demonstrate that

(3-17 ML,.P [ Re() ].

Similarly, it follows from Equations (3-i11) and (3-16) that

(3-18) XL,2L'.IPEI, -e XF.IIRc]

This demonstrates that Equation (3-14) is the decomposition of the

future onto the past and onto the noise orthogonal subspaces.

The information of the projection of the future onto the past
13 contained in matrix RB. Specifically, the rank of R8 is equal

to the order of the state space model representation for the
future-to-past interface, and the column space of RB is equal to

the column space of the observability matrix for the state space

model (Van Overschee and De Moor, 1993).

At this point in the development it is convenient to continue
the decomposition of the Q and R matrices in Equation (3-12) in

order to isolate as much as possible the structure of the

orthogonal subspaces. To that end, consider Equation (3-12), and
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carry out a further partitioning of the QR decomposition matrices

as follows (the dimensions of the matrices on the right-hand-side

of Equation (3-19a) are given in (3-19b) and (3-19cM)

(3-19a) = M . . . " 2

XL2L. R3, 132 R3 [0] OH
03LR41 R42 R43 R4 .OH

J(L-1) J J J(L-1)

J(L-1) RI, [0] [01 [0]

(3-19b) J R21 R22 [0] [0]

J R31 R32 R33 [01
J(L-1) R41 R42 R43 R44

M

J(L-1) OH

j ~ ^H

(3-19c) ...

J3

J(L-1) OH

From Equations (3-12) and (3-19) it follows that the JLxJL matrices

RB and RO are defined with the following partitions:

(3-20) RB =[ R31 R32]
IR41 R42

(3-21) RO = R3 R1
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Refer to the partitioning in Equation (3-19) and define two other

partitioned matrices as

(3-22) RD w I R41 R42 R43

(3-23) RE = R4

matrix RD is J(L-1)xJ(L+I), and matrix RE is J(L-1)xJ(L-1). Now carry

out two QSVDs -'n these matrix pairs as detailed in Appendix B,
One QSVD is api Led to the matrix pair RB and RC to obtain

(3-24) R ULSy

(3-25) Rý N VLTLyH

The second QSVD is carried out on the matrix pair RD and RE, and

results in

(3-26) RH = Un. SL. YLH

(3-27) RHE - VL.1TL.1iL.l

In these two QSVDs, matrices UL.1, UL, VL.1, and VL are unitary, and
matrices YL-, and YL are square and non-singular (Appendix B).

Also, the subscripts (L or L-1) correspond to the term index of an

associated observability matrix defined as in Equation (2-16)

That is, the following two results are true:

* The column space of matrix RD is the same as the column

space of 0 L.1. This result follows from two facts:
first, for L-1 > N the observability matrix maps the

state space onto the output space; and second, the
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decomposition on Equation (3-19) indicates a

decomposition of the form (3-14) for the block Hankel
matrix XL4!,2L.1, which consists of the last L-1 block

rows of XO,2L., in Equation (3-19).

* The column space of matrix RB is the same as the column

space of 0 L. As in the preceding argument, this

follows from the mapping property of the observability
matrix and from the decomposition of matrix XL,2L.1 in

Equation (3-14)

Consider the cases where the matrix pairs (R8, RC) and (RD, RE)

form concatenated matrices of full rank (see Appendix B), which
are the most likely cases in practical situations involving random
data. In those cases matrix SL.1 is rectangular ...h 2J more rows

than columns, and is zero except possibly along the main diagonal.
The elements along the main diagonal of SL., are real-valued, with

value bound between unity and zero, and arranged in order of
decreasing magnitude. Matrices SL, TL.O, and TL are square and
diagonal. The diagonal elements of SL are real-valued, with value

bound between unity and zero, and arranged in order of decreasing
magnitude also. The diagonal elements of both TL., and TL are also

real-valued and with value bound between unity and zero. However,

the diagonal elements of these two matrices are arranged in order
of decreasing magnitude. In pairs, the diagonal elements of SL.1

and TL.1 are referred to as singular value pairs of matrices RD and
RE. Likewise, the diagonal elements of SL and TL are the singular
value pairs of matrices RB and RC.

The value of the diagonal elements of matrices SL.l and SL are

indicative of model order. In fact, when the data is the output
of a system of order N, only the first N diagonal entries are non-
zero in matrices SL., and SL (model order determination is
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discussed further in Section 3.2). As discussed in Appendix B,
for every zero-valued diagonal entry in matrix SL there is a
corresponding unity-valued diagonal element in matrix TL. The same
relationship is true for matrices SO.1 and TL.O. Thus, for an N-th
order model the two pairs of S(.) and T(.) matrices have a natural

partition along the main diagonal corresponding to the first N

entries. Specifically,

(3-28) SL - [ Lo

(02S()1 sL~[0]
S[01 S) "L [0] 0jL.N

(3-29) ' 0] 1 [ ( [0]]
SO SL (2)"SLI [[0] SOL- [0] 0 JL+J.N,JL-J.N

.. L' [o 0-€1 -[O) 10.
(3-30) TL =[ [0 I 1

(3-31 T T 01 i (10

(33) T..j= ~j T j[ 0] 'JL-N

Now define block column partitions in matrices U(.), V(.), and Y(.) to

correspond with the partitions in Equations (3-28)-(3-31). This

results in

(3-32) UL = II U" () U(2) ULl , u(1) U(2)]
L L-1 0-

(3-33) VL = [V (1) V (2 VL-l IVL~ ()V (2

(3-34) YL = I Y ( ])L-1 = (2 y.L-("(2) ]
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All submatrices with superscript 1 have N columns. Partitioning

of the S(.), T(.), U(.), V(.), and Y(.) matrices does not provide a

theoretical advantage or an enhanced insight; it does, however,

reduce the computational burden.

The two QSVDs were introduced to extract the structure and

subspace information available in the R matrix (and submatrices)

of the QR decomposition. Substitution of the QSVD results into

the corresponding partitions in Equations (3-12) and (3-19) allows

appreciation of this structure. Carrying this out leads to the

following expressions:

F H] Q H

(3-36) L"[,2L-1- R E SL-1UHI TL-1VL-I H]

Both of these equations exhibit a subspace decomposition of the

respective block Hankel data matrix, and in each equation the

information of the structure of the two orthogonal subspaces is
contained in the partitioned matrix involving the S(.) and T(.)

matrices. In Equation (3-36) the partitions in the matrices are

not emphasized because the dimensions of the individual partitions

are not compatible (as they are in Equation (3-35)) . Of course,

overall matrix dimensions are compatible.

Given the decompositions in Equations (3-35) and (3-36), it

remains to develop the procedure that relates these decompositions

tO the innovations model parametea matrices. This is done using

orthogonal projections in random vector spaces.

40

cotie in th pattoe mari inovn th SI. an T



Consider the orthogonal projection of the future block vector
Sonto the past b lock vector l (reca ll Equations (2-24) and (2-

25)). This projection is the minimum variance estimate of IF given
A, which is also the conditional mean of 4 given Ap. That is,

Using Equations (2-26) and (2-28) this can be expressed compactly

in terms of the observability and reversed dual controllability

matrices as

(338) ^ M1(3-38) " 4  :L,LYP = OLABL!K.LLp

Suppose a minimum variance estimate is soug.ht for each one of the
columns of the data block Hankel matrix XL,2L.1, which represents the

future. Then, concatenating M such estimate equations into a

single matrix estimate equation leads to

(3-39) XL,2L-1 = QL . :L,LX0,L-1 = OLZL

The NxM matrix ZL is very important, and deserves to be defined

directly, as in Equation (3-40) next,

(3-40) ZL 1LI:LLX0,L.1

Equation (3-39) states that the minimum variance estimate of the
output (the columns of matrix XL.2L.1) is a linear function of the

columns of matrix ZL. Recall that the observability matrix maps

the state vector into the output, and that the states of a Kalman
filter are minimum variance estimates of the states of the linear
system for which the filter is designed. Thus, the columns of ZL
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are states of a Kalman filter for the system to be identified.

This result is instrumental to the algorithm.

Equations (3-39) and (3-40) involve correlation matrices,
which is undesired because of the computational burden associated
with their calculation and also because of the increase in

numerical precision (dynamic range) associated with computations

involving correlation matrices. It is possible to convert these

equations to "square root" form by substituting estimates of the

correlation matrices calculated using channel output data. For
sufficiently large values of M the reversed stochastic Hankel
matrix and the past block correlation matrix areapproximated

effectively by the biased correlation matrix estimators using the
channel output data, and it is simple to demonstrate that such
estimates can be represented in terms of the output data block
Hankel matrices. Specifically, for large M,

(3-4 1) ~. -~ X L.XL. H HA

... tH YSURHAj.

(3-42) {L.LwL -1M XL. 2L'IX0L-1 m YLSLU = A L"BL

where Equations (3-13) and (3-35) have been applied. Equation (3-

42) suggests that the reversed stochastic Hankel matrix can be
factorized, as in deterministic realization problems (Zeiger and
McEwen, 1974), to obtain the observability and the reversed dual

controllability matrices,

(3-43) 
() ( YLSL2

.L

(3-44) - -
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Now the matrix of Kalman filter states, ZL, can be determined as

(using Equations (3-13), (3-40), (3-41), and (3-44)),

(3-45) = ) (s1)/(U))Q (I (a,)/2u)H[Q 1

This is a key result of the algorithm.

In order to calculate the system parameter matrices F, r, and

H it is necessary to determine two additional filter state
matrices: ZL+l and WL. Matrix ZL+I can be thought of as a "shifted"

version of matrix ZL; in fact, the columns of matrix ZL+I are

obtained from the columns of matrix ZL via a Kalman filter (or an

innovations model, Equation (2-34)). Determination of matrix ZL+l

requires steps identical to those in the derivation of matrix ZL.

The main difference is that the matrices involved correspond to

the (L+1)-term observability and reversed dual controllability

matrices. And consequently, the results of the QSVD of matrices
RD and RE are utilized. Repeating the steps in the derivation of

matrix ZL leads to the following result:

(3-46) ZL+ I, (S1)))"aO ((())Y ) (U•) 1
QHJ

(1)

where the underbar denotes that matrix () is obtained from matrix

(1) by deleting the last block row.

If the procedure to determine matrix ZL is followed departing

from the orthogonal projection of the past block vector A onto the

future block vector 4, then the resulting matrix, denoted as WL,

is a matrix of Kalman filter states for the backward Kalman filter
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(the Kalman filter for the backward system). The form of this

backward filter states matrix is

H
01
H

(34) W M (s V)2 [ S () (U ())H T4) (V())H] 2

Q3
H
04

The main difference between this expression and the expression for
matrix ZL, Equation (3-45), is that Equation (3-47) includes

matrices TL and VL directly.

Given the Kalman states matrices ZL, ZL÷I, and WL, the system

parameter matrices F, r, and H can be determined as least-squares

solutions to linear systems of equations in noise. This is a

result of the relationship with these matrices and the forward and

backward Kalman filter for the channel output sequence {I(n)}. The

procedure is described next.

Since the columns of the matrices ZL and ZL,, are Kalman

filter states, it follows that

(3-48) ZL÷1 a FZL + Zu

where Zu is a matrix of residuals orthogonal to ZL (Kalman filter

residuals are orthogonal to the state estimates). A least-squares

estimate of F is obtained from Equations (3-45), (3-46), and (3-

48) as

(3-49a) F . - zj, 1z4(ZLz)V1
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( 3-4 b) F9b (s "1)• 12 ( •(,))t Y I. s •. (u),)H (u)'(S(( 1  Y1/

Alternative formulas for matrix F can be defined based on several

relationships (observability; controllability; backward model;

etc.) that are valid for the system matrix. Each distinct formula

presents different numerical precision and computational

requirements. This issue defines an important set of trade-offs

for investigation in Phase II.

The output equation for the Kalman filter leads to the

following matrix relation,

(3-50) XL - HZ. + Z,,

where matrix XL is the first block row of matrix XL2L.-, and Z4 is a
matrix of residuals orthogonal to ZL. From the definition of XL

and Equations (3-12) and (3-19),

H02
(3-51) X [Y(L) X(L+1) ... X(L+M-1) - R 31 R3 R3 [0 ] ----

H03

L)H04

From Equations (3-45), (3-50), and (3-51) the least-squares
H,estimate of H is

(3-52a) HH I X.4 . XLZ4(Z•4Z)"

(3-52b) HH = [ 31  R32  U(')(S(1
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This is a simple expression and it involves matrices of relatively

low dimensionality. An alternative derivation for Equation (3-

52b) departs from Equation (3-43) and capitalizes on the fact that
matrix H occupies the first J rows of the observability matrix.

A least-squares estimate for r is obtained in a manner

analogous to the solution for HH obtained above. This is based on
the fact that JH is the output measurement matrix for the backward

system. Thus, the output equation for the backward Kalman filter

leads to the following matrix relation,

(3-53) XL., - eWL +ZV

where matrix XL. 1 is the last block row of matrix X0L.0, and Zv is a

matrix of residuals orthogonal to WL. From the definition of XL.,

and Equations (3-12) and (3-19),

H
01

H

(3-54) X .. . [ (L-1) I(L) ... x(L+M-2)] m [ R 21 R22 C0] [01 ] 0

HQ;"
LH

Then, based on Equations (3-47), (3-53), and (3-54), the least-

squares estimate of ` is obtained as

(3-55a) r. XL.IW• , XL.,WLA(wwL)

(3-55b) r " . R21 R22,IU (1)(S (1) ) 1/

This expression is analogous to Equation (3-52) . Just as in the

case for HH, an alternative derivation of Equation (3-55b) is
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possible based on the fact that matrix r occupies the last J

columns of the reversed dual controllability matrix, Equation (3-

44)

Alternative formulas can be defined also for matrices H and r
based on the various system relationships that involve these
matrices. This also constitutes an important set of trade-offs
for Phase II.

Notice that the Q(.) matrices do not appear in the final

expressions for the matrix parameters. The QR decomposition is
fundamental to the algorithm, but only the R(.) matrices have to be

calculated and stored. This is a very important feature of the
algorithm because one dimension of Q(.) is very large (M), and the

manipulation of these matrices would involve significant storage
and computational requirements.

Determination of the remaining matrix parameters for the
innovations model (2-29) is described next. Consider first the
steady-state correlation matrix of the innovations model state, n.
This correlation matrix is equal to the correlation matrix of the
Kalman filter state (Anderson and Moore, 1979) . Therefore, a
robust estimator for H is based on the columns of matrix ZL,

(3-56) H = ZLH= S(L

It turns out that the backward filter states also lead to the same

result,

(3-57) n= WLWH

A system model such that the forward and backward correlation
matrices are both diagonal and equal is said to be in h
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nnnrdfnatas (in the stochastic sense), Balanced coordinates allow

effective model order selection and/or reduction,

The zero-laq output correlation matrix is obtained directly

from the output sequence as

(3-58) A.. - 1 _. (k)IH(k)

NT k.O

(3-59) NT a M+2L-1

here NT is the total number of output data vectors (length of the

output sequence) used in the algorithm. The innovations

correlation matrix is obtained from Equation (2-30a),

(3-60) n = Ao-HHnH

Finally, the one-step prediction filter (Kalman) gain is obtained

from Equation (2-32a) as

(3-61) K [r- FrIH] l' a [r.- FHH] [Ao- HHnfH]1

which completes the model parameter identification algorithm.

3.2 Model OQder Determination

Model order determination is a necessary decision for any

identification algorithm in applications where the true order of

the system generating the channel output data is unknown, or where

the true process generating the data may not belong to the model

class adopted to represent the data. In the second case the model

generated by the algorithm is a "representation model," as opposed

to a "physical model" (a model based on accurate analyses of the
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underlying physical processes). Determination of the model order

is always a difficult problem, and the solution is rarely clear-

cut. The Van Overschee-De Moor identification algorithm does have

several strong features that lead to robust model order

estimation. Principally, the algorithm identifies the model

parameters of the innovations representation for the multichannel

process in balanced coordinates. Model order determination is an

important issue and deserves detailed analysis during Phase II.

The prime mechanism for model order selection in the

algorithm is examination of the diagonal values of matrix SL

(recall that the diagonal elements of SL are real-valued, non-

negative, bounded by unity and zero, and are arranged in order of

decreasing magnitude) . As indicated earlier, the innovations

model identified by the algorithm is in balanced coordinates

(Moore, 1981), and the steady-state correlation matrices of the

state of both the forward (n) and backward J1b) innovations models

are equal to matrix SL. In a system representation in balanced

coordinates the position of a state in the state vector is

indicative of the importance of the contribution of that state to

the output correlation sequence (the first state is equal in

importance or more important than the second state; etc.), and the

magnitude of the corresponding correlation matrix element is

representative of the relative contribution of that state. Thus,

an effective model order selection approach is to identify the

negligible diagonal elements of matrix SL, and select the model

order to be equal to the number of non-negligible diagonal

elements of SL.

In most situations involving a finite amount of data, all the

diagonal values in matrix SL are different from zero. This is due

to the fact that the subspace decomposition is imperfect with

finite amounts of data because the measurement noise {fL(n)} corrupts

49



the past output subspace, and vice versa. In such cases, model

order can be estimated by identifying jump discontinuities in the
magnitude of the diagonal values of SL.

Other criteria can be examined to estimate model order.
Squaring the diagonal values of SL emphasizes discontinuities, and

thus provides a good criterion also. The normalized running sum
of the diagonal values of SL, and the normalized running sum of

the squared diagonal values of SL, are two additional criteria for

model order selection.

In the absence of one or more jump discontinuities, external
information may be required, such as prior knowledge of the system

being modeled. Alternatively, a reasonable model order can be
selected, and various analyses can be carried out to reduce the

order of the model taking advantage of the features of a state

space realization in balanced coordinates.

Other considerations for model order determination arise in
the calculation of the QSVD for the matrix pair RB and RC. It

turns out that incorrect determination of the rank of a certain
matrix in the generation of the QSVD of the matrix pair R8 and RC

can lead to major difficulties in the determination of model
order. As in Appendix B, let a 2JLxJL matrix B denote the
concatenation of matrices RB and RC as (relevant equations from

Appendix B are repeated here for simplicity)

(3-62) B ...

Application of the QSVD to the matrix pair Re and RC leads to the

decomposition, expressed for the general case where rank(B)<JL,
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UL[ SL OJLJL- r(B) ] H(3-63a) B VL [ TL OJLJL-r(B)]

(3-63b) B - [ L2, H [L V H
L OjL. rB,JLJ OJL- r),JLJ

where r(B) denotes rank(B). As indicated in Section 3.1, the column
space of matrix RB is equal to the column space of OL, and as is

well known, the dimension of the column space of OL is equal to

the model order, N. Therefore, the decomposition of RB in

Equation (3-63) is indicative of model order. In fact, model
order information is included in matrix SL, since matrix YL is non-

singular and matrix UL is unitary. This is another interpretation

of the order-determining properties of matrix SL.

An important result associated with the decomposition (3-63)

is Grassmann's dimension theorem. This theorem can be stated as

(3-64) dim[range(RB) r) range(Rc)] = rank(RB) + rank(Rc) - rank(B)

Another relevant result follows directly from first principles,

(3-65) rank(B) > max[rank(RB), rank(Rc)]

Joint consideration of Equations (3-64) and (3-65) indicates that
the model order, N, satisfies the following constraint,

(3-66) N: <rank(B)• JL

This equation implies that under-estimation of the rank of matrix
B in the process of generating the QSVD for the matrix pair RB and
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RC forces the dimension of the model to be a small value, whereas

over-estimation of the rank of matrix B drives the dimension of

the model towards large values. In the approach adopted herein

the second condition is preferable because the innovations model

parameters are estimated in balanced coordinates, and model order

reduction is robust and effective in such cases, as discussed

above. Therefore, in the generation of the QSVD for the matrix
pair RB and RC it is preferred to select the rank of matrix B (or

the respective matrices in the other QSVDs) to be as large as
possible. In most practical cases where noise is present, the

rank is likely to assume its maximum value, JL.
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4. 0 INNOVATIONS SEQUENCE GENERATION

In the approach pursued in this program, an unknown system of

the form (2-2) is modeled as an innovations representation (2-29).

Thus, once the innovations model parameters have been identified,

an optimal Kalman filter can be configured to generate the
innovations sequence, {c(nf), for the likelihood ratio calculations.

The approach described in this section is applied to the

observation data under each of the two hypotheses.

Any one of several equivalent Kalman filter formulations can

be applied to generate the innovations sequence. However, the

one-step predictor formulation offers significant advantages in

the context of the intended application (Anderson and Moore,

1979). Specifically, the one-step predictor formulation generates

the innovations sequence and the filter state update with a simple

structure in. the case where the input and output noises are

correlated (SO[0] in Equation (2-5a)), and thus imposes less real-

time computational requirements than other formulations. Also,

the model identification algorithm generates the parameters for

the innovations model. Thus, the one-step predictor formulation

is adopted in this work. Strictly speaking, the terminology "one-

step predictor" should be used hereafter, but use of the term

"Kalman filter" is accepted universally. Both terms are used

herein.

The steady-state one-step predictor formulation for the

innovations model (2-29) is a* linear, time-invariant system

described by the following equations:

(4-1a) X(n+1 In) = F'(nln-1) + K•(n) n Ž no

(4-1b) g(n) - j(n) - Anln-1) - i(n) - H HQ(n5 n-1) n3no
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(4-ic) "(noIno-1) Q

Here a(n+11n) is the estimate of the innovations model state vector

at time n+1 based on observation data up to time n, j(njn-1) is the

estimate of the observation vector at time n based on observation

data up to time n-1, and g(n) is the innovations associated with the

observation 2(n). Matrix K is the steady-state filter gain matrix.

The filter initial condition is set equal to zero because the

innovations model initial condition is zero, Equation (2-29c). A
block diagram of the Kalman filter is presented in Figure 4-1,

displaying the channel output vector as input, and the innovations

sequence vector as output.

1inln ) K (

Figure 4-1. Kalman filter block diagram, emphasizing the
innovations sequence generation filter function.

The steady-state filter is an approximation to the optimal
time-varying filter. If the channel output process is in steady-

state, this approximation provides acceptable performance.
Additionally, the steady-state filter provides a significant
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reduction in the real-time computational requirements over the

time-varying filter. In the cases where the channel output

process is not in steady-state, filter performance is suboptimal,

and the degree of loss of optimality needs to be ascertained.

Such a determination is a subtask for Phase II. A related issue

involves filter initialization transient effects. Since the

steady-state filter gain is used, it may be necessary to neglect
the first Ni filter outputs for each data batch. Determination of

the value of N, can be carried out via analysis and simulation, and

is another subtask for Phase II.

Anderson and Moore (1979) show that the filter estimation

error for an innovations model is zero at all times. That is,

(4-2) a(n+lIn) .= (n+l)

Correspondingly, the filter estimation error correlation matrix is

zero also. This can be inferred from the parallelism between the

innovations model (2-29) and the filter representation (4-1).

Thus, knowledge of the filter implies knowledge of the innovations

model, and viceversa.
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5.0 LIKELIHOOD RATIO DETECTION

A detection methodology for complex-valued multichannel

Gaussian processes has been developed by Michels (1991) in the

context of innovations-based detection. This approach has been

generalized recently to include a class of non-Gaussian processes

known as spherically-invariant random processes (SIRPs) and using

linear estimators (Rangaswamy, Weiner, and Michels, 1993).

Michels' methodology can be applied directly to the innovations

sequence generated by the approach formulated herein. For

brevity, only the likelihood ratio equation is presented here.

As discussed in Section 4.0, a Kalman filter (one-step

predictor) is determined for each of the two hypotheses based on

processing the multichannel data. The model order for the
alternative hypothesis (HI) filter is chosen to be larger than the

model order .for the null hypothesis (H0 ) filter. For each

hypothesis filter, denote the innovations sequence, Equation (4-

ib), as

(5-1) C(njH I) a (n). A(njn-1;H ) - (n) - H H (nn-1;Hj) i.O, 1

The steady-state correlation matrix of the innovations is denoted
as Q(Hj), and is defined in Equation (3-60).

Let 19(H 0,Hj) denote the multichannel likelihood ratio as

defined by Michels (1991) for the Gaussian signal case. Then, the

log-likelihood ratio (LLR) can be expressed as follows,

(5-2) + ((nH 0 ) Q (Ho) g(nIHo)

5H(n6Hj ) Q'1(H6) E(nlHI )j
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The LLR is compared to a threshold, T, which is calculated

adaptively to maintain a constant false alarm rate (CFAR),

(5-3) 
ý: T select H,

< T select HO

A candidate CFAR approach with demonstrated good performance

calculates the median of a set of the LLR values from a number of

adjacent range cells (at the same azimuth) on both sides of the

cell in question, and scales the calculated median value by a

pre-determined constant to provide the desired false alarm rate

(Metford and Haykin, 1985).

The LLR expression has to be modified if optimal time-varying

filters are used instead of the steady-state filters. In such

cases the modification is straightforward, and involves replacing

the steady-state correlation matrices of the two innovations by

their time-varying values.

Alternative expressions for the log-likelihood ratio can be

generated based on factorization of the innovations correlation

matrix and spatial whitening of the innovations process. This

includes Cholesky factorization, LDU decomposition, and SVD, The

first two techniques have been described by Michels (1991), and

lead to simplified LLR expressions. The SVD technique is derived

here.

Consider the steady-state innovations correlation matrices

for each of the two hypotheses and carry out an SVD on each

correlation matrix. Thi3 results in the following decompositions:

(5-4) Q(Hi) - ViZiVi ýq i=Ol
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where matrix Vi is a JxJ unitary matrix, and Zi is a diagonal matrix

with real-valued, positive elements arranged along the diagonal in

decreasing order of magnitude (it is assumed herein that the

correlation matrix of the innovations sequence has full rank)

That is,

0 2 0

(5-5a) Lim =,2 i no, 1

0 a2
L 0 0 ... Oa

(5-5b) 22  k ... z OF, > o i-0, 1
11 12 U.

Since matrix VI is unitary, the determinant and inverse functions

of 12(HI) are obtained easily as

(5-6) "1 (H) = v,1 EIvH ino, I

(5-7) 1LXHI)I mL I t 2 i no, 1
II kel

Now make a linear transformation on the innovations sequence using
the unitary matrix V1, to obtain

(5-8) y.(nIH1 ) - V'gr.(nlHi) =0, 1

The transformed innovations sequence, y.(nIHi), is uncorrelated

spatially as well as temporally (recall that {(ntHi) is uncorrelated

temporally), with correlation matrix Z.. Transformation of a J-

dimensional vector by a unitary matrix rotates the vector in the J-

dimensional space, but does not alter its magnitude. Thus, the
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spatial whitening transformation does not alter the variance of

the elements of the innovations vector.

Substituting Equations (5-4) through (5-8) into Equation (5-

2) results in the following LLR expression

(5-9) IV0H0 H) -+vnoI- Vk(flIHl
flmi Cm1L2 j ;2 a2  JAdii, W ak - 0 k Y1k

where Vk(nIjH) denotes the kth element of y(nIH1). This LLR is of the

same form as the LLR derived by Michels (1991) for spatial
whitening of the innovations using an LDU decomposition.
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6.0 SOYTWARE SIMULATION

The identification and filtering algorithms described in the

preceding sections have been programmed in FORTRAN 77 for Apple

Macintosh processors. Support software for the validation and

execution of the routines has been generated also. The support

software includes signal generation routines, auxiliary routines

for validation, and code for miscellaneous calculations. The
identification algorithm makes use of the singular value and QR
decompositions. Subroutines that implement these matrix

operations for complex-valued matrices were obtained from versions
of the LINPACK software package (Dongarra et al., 1979). Separate

code was written and exercised to validate the LINPACK routines
before incorporation into the main algorithm code. The signal

generation code uses a Gaussian random number generator obtained
from the text by Press et al. (1989). Sample realizations

generated by this code were tested for whiteness and gaussianity.

6.1 RoLvara Validation

Code validation was carried out in two steps. First, all
subroutines and select segments of code were validated
individually. Second, the complete package was validated using
examples generated for that purpose. The examples consisted of

system models with a simple structure so that the computer output

could be predicted. Both real-valued and complex-valued examples
were generated. One particular example used is the second-order

system defined by the following matrix parameters (for a system
model of the form (2-2)):

F n= fil f 12 ]

f21 f2
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HH-G- DH= Q o C -12

This model was used to generate a random vector sequence to
validate various aspects of the software. For example, defining
matrix F with fl1 f12=f22 a 0 and f21 0 1 generates an output vector

sequence that consists of white noise in each output channel, but

the two channels are correlated from one instant to the next (the

correlation is due to the coupling induced by the non-zero (2,1)
element of F) . The output of the identification program should

indicate a first-order model, with the first diagonal element of
matrix SL approximately equal to 0.7071, and low values for the

remaining diagonal elements. This was the result obtained.
Complex-valued test cases using this sample model were generated
by letting F be a diagonal matrix with the desired complex-valued

poles along the diagonal.

During validation and testing it was discovered that system

poles along the real axis are more difficult to estimate, and that
Equation (3-49) can produce biased results (over-estimation of the

system poles) in some cases. This has been observed also by the
research team at the Catholic University of Leuven, and one
approach to mitigate this consists of utilizing alternative, more
complex algorithms for the estimation of matrix F. Identification

and detailed evaluation of these alternatives is an activity for

Phase II of this program.

6.2 Analyse. and Simulation Rowults

The software has been exercised with cases generated using
multichannel AR models provided by the program monitor at RL, Dr.

James H. Michels. These cases consist of signal only, clutter

only, signal + noise, clutter + noise, and signal + clutter +
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noise. In all cases the signal, clutter, and noise processes are

statistically independent of each other,

Sigia1a A Modml

The signal model is a complex-valued, two-input, two-output
AR model of order 2 with the following matrix parameters,

y(n) =- A(1)y)(n-1) -A H(2)y(n-2) + 14(n)

AP(1),[ 1,6290-j 1.4241x10 7  1.3733x10- +j 3.8202x0O 3 ]1

1. 3733x10" + j 3.8202x10"13 1.6290 - j 1,4241x10" 7

(2)-[ 0.80996 - j 1.4162x10"7  1.5259x105 - j 9.0949x1013]
L1 .5259x10- j 9.0949x10- 13  0,80996 - j 1.4162x10, 7

The input to the signal AR recursion, ({.(n)), is a zero-mean, unit

variance white noise sequence with a spatial correlation structure

defined as

,.0.13038 0.129071
0.12907 0.13038

This two-input, two-output AR model corresponds to a fourth-order
state space model in an innovations representation (as described

in Appendix A), with poles at the following locations in the

complex z-plane:

True Signal Model Poles: -0.81451 ± j 0.38282

-0.81449 ± j 0.38281

This AR system was defined by Michels to have a very high channel-

to-channel correlation (-0.99), which indicates that a lower-order
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model could represent the signal information. Specifically, a

second-order state space model can represent the signal

information well. Notice that the pole locations are almost

repeated roots, which indicates that the two channels are almost

identical. Therefore, given a high-level of channel-to-channel

correlation, a reduced-order model should perform adequately.

The AR process {(,(n)) is corrupted by a zero-mean, unit-

variance white noise sequence {X(n)) to give the noise-corrupted

channel output sequence as

4(n) = X,(n) + V(n)

For this noise model and the signal model given above, the signal-

to-noise ratio (SNR) is approximately 3 dB.

Consider. the problem of representing the AR signal in

additive white noise with a state space model. The channel output
noise, {V(n)), alters the parameters of the state space model

designed for the AR signal {X(n)} only, but (2(n)) can be represented

as the output of a state space model. That is, {4(n)) is

represented as the output of an innovations model, but the model
for {((n)), which includes the additive noise {((n)}, is riot an

innovations model (there is an innovations model for {((n)}, but it

is different from the innovations model for (4(n))) . This is a

manifestation of the well-known fact that an AR process corrupted

by additive output white noise is no longer an AR process. In

contrast, the state space model remains a valid representation of

the signal even after the addition of a new noise source. This is

one of the reasons why algorithms developed based on state space

models are more robust than algorithms based on time series

models.
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Clutter AR Model

The clutter model is a complex-valued, two-input, two-output

AR model of order 2 with the following matrix parameters,

x,(n) I" A(1)X(n-1) - A'(2)yc(n-2) + j(n)

AN(1) - [ -1.0430 0.0430.0 -. 0430

A" [2) 0.4900 0.0
0(2). o 0o.o 0.49001

The input to the clutter AR recursion, {(U(n)}, is a zero-mean, unit

variance white noise sequence with a spatial correlation structure

defined as

1.5502 0.0]
QC 0. 0 1.5502J

This two-inpUt, two-output AR model corresponds to a fourth-order

state space model in an innovations representation (see Appendix

A), with poles at the following locations in the complex Z-plane:

True Clutter Model 2oles: 0.5215 + j 0.4669

0.5215 ± j 0.4669

The clutter AR coefficient values, the noise covariance values,

and the diagonal structure of this AR system indicate that the two

channels are uncorrelated. Thus, a fourth-order state space model

can represent the clutter information well. Notice that the pole

locations are repeated roots, which indicates that the two

channels are identical.

64



The clutter AR process {X(n)} is corrupted by the zero-mean,

unit-variance white noise sequence {w.(n)} to give the noise-

corrupted channel output sequence as

A(n) - y(n) + A(n)

For this noise model and clutter model the clutter-to-noise ratio

(CNR) is approximately 6 dB.

Selected Simulation Result-s

The identification and filtering software was exercised with
the sequence {j(n)). Calculated values of the model order criterion

parameters, the diagonal elements of matrix SL, indicate that a

second-order state space model is a good approximation to this

system, as expected. Specifically, the values of the diagonal
elements of matrix SL are: (0.9804, 0.9776, 0.6712, 0.6360,

0.1215, 0.0912}, and the set of the square of these values is:
(0.9612, 0.9557, 0.4505, 0.4045, 0.0148, 0.0083). Examination of
these two sets indicates that a second-order model is a good fit

to the data. The next reasonable model order selection is four.

Based on the above discussions, model order 2 was selected

for the AR signal in white noise. Figure 6-1 is a plot of the
real part of the first element of a single realization of the
innovations vector process, {eI(n)}, generated using a filter of

order 2 (all plots herein are for single-realization cases) . The

filter parameters were identified using 2,214 output sequence
vectors (corresponding to L= 8 and M= 2,200 in Equations (3-21)

and (3-22)). Only 500 points are shown in the figure, but these

points are representative of the sample process. The innovations

sequence appears to be unbiased, with a calculated sample mean of
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[ 0.0103 + j 0.00741,(n) - 0.0308 - j 0.0050

Notice also the high degree of "whiteness" exhibited by the
innovations. The imaginary part of the innovations behaves

similarly. The autocorrelation function of the sequence in Figure

6-1 was estimated, and is shown in Figure 6-2. This figure

clearly indicates the random (white) nature of the innovations, as

expected. The zero-lag innovations correlation matrix identified

by the software using Equation (3-60) is

1.5337 0.5908 + j 0.045"i
[0.5908- j 0.0453 1.5832 1

This agrees very well with the sample correlation value of 1.536

indicated in Figure 6.2. Several simulation runs were made using

multiple sample realizations of the same length and filter order

two. A plot. of the innovations correlation averaged over ten

realizations looks very similar to Figure 6-2.

first element of innovations vector for case of signal plus noise

.2
0

>
S0,

a-iJ

IR -2-

"0 100 200 300 400 500

time index, n

Figure 6-1. Real part of the first element of innovations vector
for the case of signal plus noise.
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first element of innovations covariance for case of signal plus noise

1.5•r

8 o
.0.51 -

0 5 10 15 20

time index, n

Figure 6-2. Real part of the auto-correlation function of the
first element of the innovations sequence vector for the case of

signal plus noise.

Identification algorithm performance can be assessed by

examining the roots of the identified innovations model system
matrix, F. The scatter plots in Figure 6-3, which correspond to

results obtained for ten distinct realizations, illustrate the

parameter identification capability of the algorithm. These

scatter plots show the ten identified root pairs, all in close
proximity to the true roots given above. The dashed lines in each

plot intersect at the center of each plot (-0.81 - j 0.38 and -

0.81 + j 0.38, respectively), and the centers are very close to

the true root values (-0.8145 ± j 0.3828). All the identified

roots are at a distance less than 3% of the true values, and most

are much closer than that.
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Root No. 1 Root No. 2
-0.35" 0.41-

I X I
I

XI II I

j -.0.37- C 0.39,
S.. . . . V f

XlI

I I
E X

-0.41 . . . .. 0.35 ..

-0.84 -0.82 -0.80 -0.78 -0.84 -0.82 -0.80 -0.78

real part real part

Figure 6-3. Scatter plot of real and imaginary parts of
identified model poles for ten distinct realizations of signal

plus noise.

The software was used also to model and analyze the clutter
plus noise sequence, (&(n)). For this case at a CNR of 20 dB, the

model order criterion parameters, the diagonal elements of the
matrix SL are: {0.8187, 0.7919, 0.3027, 0.2748, 0.1340, 0.11121;

and the set of the square of these values is: {0.6703, 0.6271,

0.0916, 0.0755, 0.0180, 0.0124). This information, together with

knowledge of the lack of channel correlation, indicates that a

fourth-order state-space model is a good approximation to this

system. Without prior knowledge regarding channel correlation,
measures such as the percentage incremental power attributable to

each additional singular value may result in improved model order

estimates.

Model order four was selected for state space representation

of the clutter AR process in additive white noise. Plots of the
real and imaginary parts of the first element of a single
realization of the innovations vector process, {£e(n)}, are presented
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in Figure 6.4. These results were generated using a fourth-order

filter for a case with 6 dB CNR. The filter parameters were
identified using 2,214 output sequence vectors (corresponding to L

- 8 and M= 2,200 in Equations (3-21) and (3-22)), as in the signal

+ noise case. Only 500 points are shown Figure 6.4, but these

points are representative of the sample process. Both components
(real and imaginary) of the sequence {(e(n)} are unbiased, as

indicated by the sample mean,

S[) - 0.0101 -j 0.0429 1
0.0538+j0.0076 j

An estimate of the real and imaginary parts of the sample
autocorrelation function of {(1(n)) of Figure 6-4 is given in Figure

6-5. The real part has an impulse at lag n =0 and is close to zero

everywhere else, which is representative of a white innovations.
The imaginary part exhibits low-amplitude oscillations about zero,

as expected of a white innovations. The zero-lag innovations

correlation matrix estimated using Equation (3-60) is

"[ 3.1114 0.0594 + j 0.02481
0.0594- j 0.0248 3.3048 J

Element (1,1) agrees with the sample correlation value of 3.106 +
j 0.0 indicated in Figure 6-5. The behaviour of {E2(n)} is similar.

Figure 6-6 presents scatter plots of the poles of the fourth-

order system for ten realizations. The roots are clustered about

the values of the true repeated roots (0.5215 ± j 0.4669), which

are indicated by the intersections of the dashed lines. The
largest root estimation error is less than 8.2%. This error is

larger than the worst error in the signal plus noise case, and is

due to the greater difficulty in estimating faster modes.

69



first element of innovations vector for case of clutter plus noise
w 4 (order 4, CNR=6dB)

2

€ ~ ~ ~~i ýI i. " i. iii i l ! t ;

0i i.• U ;::: l F:: , it it,

E 2-
.. : • ~: '; ;

0 100 200 300 400 500

time index, n

first element of innovations vector for case of clutter plus noise
(order 4, CNR,6dB)

Hit

E
8

0 100 200 300 400 500

time index, n

Figure 6-4. Real and imaginary parts of the first element of the
innovations sequence vector for the case of clutter plus noise

(CNR - 6 dB conditions).
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first element of innovations covariance for null hypothesis data
3.5 using null hypothesis filter (order 4, CNR=6dB)

33-
> 2.5

2
E 1.5
0 .5

0 - ~~~~~~~~~~~~~~............. ......... ........................................ .. ..........

.i 01....

0.5-0 5 10 15 20

time index, n

first element of innovations covariance for null hypothesis data
0.2 using null hypothesis filter (order 4, CNR=6dB)

0.15

E 0.1 -

E 0.05- 0 ...... .. .:

.E -.0O050 5 10 15 20

time index, n

Figure 6-5. Real and imaginary parts of the auto-correlation
function of the first element of the innovations sequence vector

for the case of clutter plus noise (CNR = 6 dB).
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Root No. 1 Root No. 2
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real part real part

Root No. 3 Root No. 4
0.55 - -0.35- -
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- 0.4 -. " -0.5 - -

0.35 - -0.55 wi -

0.4 0.45 0.5 0.55 0.6 0.65 0.4 0.45 0.5 0.55 0.6 0.65

real part real part

Figure 6-6. Scatter plot of real and imaginary parts of
identified model poles for ten distinct realizations of clutter

plus noise.
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Similar biased behaviour has been observed in other

estimation results (Michels, 1992b), as well as in detection

performance results (Michels, 1992a) obtained using time series

(AR) models. For the state-space approach pursued herein,
unbiased estimates with reduced variance can be obtained by

averaging several individual estimates and/or by increasing the

complexity of the estimation algorithm.

Various simulations were carried out to obtain a first-order
assessment of the discrimination capability of the innovations-

based methodology using the SSC algorithm. One set of simulations
involved designing a Kalman filter for each hypothesis, processing

data corresponding to each of the two hypotheses using both
filters, and analyzing the resulting four filter output sequences

(two filters, and each filter processes data sets corresponding to
each of the two hypotheses). These results are presented next.
As before, all plots correspond to single-realization cases.

Consider first the case of processing data from each of the
two hypotheses using a null hypothesis filter, corresponding to

clutter + noise only. For this case the filter order is four, as
mentioned earlier in the clutter plus noise model discussion.

Results are presented herein for two sets of conditions: (a) SNR =

3 dB and CNR - 6 dB; and (b) SNR - 3 dB and CNR - 20 dB. For each

set of conditions the procedure described next was followed.

"* A realization of the clutter + noise process of duration
M = 2,200 was generated and processed to design a

fourth-order Kalman filter. The resulting filter is the

filter for the null hypothesis (signal not present).

"* The null hypothesis filter was applied to a clutter +
noise process sequence of duration Mm 2,200, and the
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sample correlation matrix sequence of the filter output

sequence was calculated. The real and imaginary parts

of the (1,1) element of the resulting sample correlation

matrix sequence are plotted in Figure 6-5 for CNR - 6 dB

conditions, and Figure 6-7 for CNR - 20 dB conditions.

Both sets of figures are representative of the auto-

correlation of a white innovations sequence, as expected

(both sets of figures show low-level energy content at

the higher lags).

• The null hypothesis filter was applied to a combined

signal + clutter + noise process sequence (alternative
hypothesis case) of duration M- 2,200, and the sample

correlation matrix sequence of the filter output

sequence was calculated. In this case, however, the

sequence is not a true innovations sequence because the

filter is not optimal for this process. The real and

imaginary parts of the (1,1) element of the resulting

sample correlation matrix sequence are plotted in Figure

6-8 for-CNR - 6 dB conditions, and Figure 6-9 for CNR -

20 dB conditions. Both of these figures show a marked

deviation from the expected auto-correlation for a white

innovations sequence.

In the discussions and results presented above the (2,2) element

of the sample correlation matrix is not referred to. This is due

to the fact that its behaviour is very similar to the behaviour of

the (1,1) element.

In continuation of the first-order assessment of the

discrimination capability of the SSC approach, consider now the

case of processing data from each of the two hypotheses using an

alternative hypothesis filter, corresponding to the combined
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process of signal + clutter + noise. Since the signal and clutter

are uncorrelated in this set of examples, a sixth-order state

space model is required ror the combined process. As before,

results are presented for two sets of conditions: (a) SNR - 3 dB

and CNR - 6 dB; and (b) SNR - 3 dB and CNR - 20 dB. For each set

of conditions the procedure described next was followed (all plots

are for single-realization cases).

0 A realization of the combined signal + clutter + noise
process of duration M * 2,200 was generated and

processed to design a sixth-order Kalman filter. The

resulting filter is the filter for the alternative

hypothesis (signal present).

* The alternative hypothesis filter was applied to a

cooined process sequence of duration M= 2,200, and the

sample correlation matrix sequence of the filter output

sequence was calculated. The real part of the (1,1)

element of the resulting sample correlation matrix

sequence is plotted in Figure 6-10 for CNR - 6 dB
conditions, and Figure 6-11 for CNR = 20 dB conditions.

As attested in both figures, the correlation sequences

correspond to white innovations sequences, as expected

(both figures show low-level energy content at the

higher lags).

* The alternative hypothesis filter was applied to a

clutter + noise process sequence (null hypothesis case)
of duration M = 2,200, and the sample correlation matrix

sequence of the filter output was calculated. In this

case, however, the sequence is not a true innovations
sequence because the filter is not optimal for this

process. The real part of the (1,4) element of the
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resulting sample correlation matrix sequence is plotted

in Figure 6-12 for CNR - 6 dB conditions, and Figure 6-

13 for CNR - 20 dB conditions. The correlation sequence

in each of the figures corresponds to a colored process,

and not to a white innovations sequence. This is the

expected result.

Figures 6-10 through 6-23 do not include the imaginary part of the

sample correlation sequence because it is similar to the imaginary

part of the sample correlation sequence presented in the preceding

figures. For this case also the behaviour of the (2,2) element is

very similar to that of the (1,1) element of the sample

correlation matrix sequence

These results indicate that the innovations-based detection

methodology using the identification algorithm adopted in this

program can discriminate between data corresponding to each of the

two hypotheses. That is, a filter designed for the alternative

hypothesis (signal + clutter + noise) generates a true innovat ins

sequence given a signal + clutter + noise channel process, ,nd

generates a colored output given a clutter + noise channel

process. Analogously, a filter designed for the null hypothesis

(clutter + noise) generates a true innovations sequence given a

clutter + noise channel process, and generates a colored output

given a signal + clutter + noise channel process.
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first element of Innovations covarlance for null hypothesis data

50 using null hypothesis filter (order 4, CNRu20dB).
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first element of innovations covariance for null hypothesis data

1.5 using null hypothesis filter (order 4, CNR-20dB)
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Figure 6-7. Real and imaginary parts of the auto-correlation
function of the (1,1) element of the innovations sequence vector
for the case of null hypothesis data using the null hypothesis

filter (CNR = 20 dB conditions).
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first element of Innovations covariance for alternative
hypothesis data using null hypothesis filter (order 4, CNR=6dB)

01

".60o 5 10 15 20
time index, n

first element of innovations covarlance for alternative hypothesis0.1 data uignlhothesis filter (order 4, CNR.6dB.)
0.15 d a a u i g nulh p(
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time index, n

Figure 6-8. Real and imaginary parts of the auto-correlation
function of the (1,I) element of the filter output vector for the

case of alternative hypothesis data using the null hypothesis
filter (CNR - 6 dB conditions).
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first element of Innovations covariance for alternative hypothesis

60 data using null hypothesis filter (order 4, CNR=2OdB)
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first element of innovations covariance for alternative hypothesis

1.5 data using null hypothesis filter (order 4, CNR=2OdB)
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Figure 6-9. Real and imaginary parts of the auto-correlation
function of the (1,1) element of the filter output vector for the

case of alternative hypothesis data using the null hypothesis
filter (CNR = 20 dB conditions).
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first element of innovations covariance for alternative
hy5othesis data using alternative hypothesis filter (order 6)
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time index, n

Figure 6-10. Real part of the auto-correlation function of the
(l,l) element of the innovations sequence vector for the case of
alternative hypothesis data using alternative hypothesis filter

(CNR - 6 dB conditions).

first element of innovations covariance for alternative hypothesis
50 data using alternative hypothesis filter (order 6, CNR=20dB)
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Figure 6-11. Real part of the auto-correlation function of the
(1,l) element of the innovations sequence vector for the case of
alternative hypothesis data using alternative hypothesis filter

(CNR - 20 dB conditions)
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first element of innovations covariance for null hypothesis
4 data using alternative hypothesis filter (order 6)
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Figure 6-12. Real part of the auto-correlation function of the
(1,1) element of the filter output vector for the case of null

hypothesis data using the alternative hypothesis filter
(CNR = 6 dB conditions).

first element of innovations covariance for null hypothesis data
using alternative hypothesis filter (order 6, CNR=2OdB)5I
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Figure 6-13. Real part of the auto-correlation function of the
(1,i) element of the filter output vector for the case of null

hypothesis data using the alternative hypothesis filter
(CNR = 20 dB conditions).
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The work carried out in this program emphasized the

development and analysis of a state space methodology and

algorithm for the model-based multichannel detection problem in

the context of radar system applications. Application of state

space techniques for multichannel detection in radar systems is

one novel aspect of the work reported here. The state space model

class is richer than the time series model class that is used

often in radar system applications. And, as demonstrated in this
work, the state space model class can be used to represent

effectively multichannel radar signals.

Another novel aspect of the work is the utilization in the

detection methodology of a new algorithm developed by Van

Overschee and De Moor (1993) . This algorithm was adopted in the
program for .multichannel radar output modeling and parameter

identification. In the process, the algorithm was extended to the

case of complex-valued radar system data, and an alternative
derivation of the algorithm was developed which is simpler and

easier to follow than the one presented in the forthcoming paper

(Van Overschee and De Moor, 1993) . The selected approach uses

channel output data directly (as opposed to output correlation
matrices) to estimate model parameters. This eliminates the large

computational burden associated with the generation of the output

correlatior matrix sequence, and leads to reduced numerical

precision (dynamic range) requirements. Furthermore, in a
practical environment it may be possible to start processing the

data as it is received. In contrast, techniques which require the

computation of channel output correlation matrices have a built-in

delay because the calculation of every lag requires availability

of all the channel output sequence.
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The Van Overschee-De Moor algorithm belongs to a class of

techniques referred to as subspace methods. Subspace methods are

based on decomposing the vector space spanned by the channel

outputs into signal and noise subspaces. This decomposition is

carried out with robust numerical techniques such as the SVD and

the QR decomposition. Thus, the algorithm offers numerical and

performance advantages over other techniques.

A computer simulation was developed to validate the algorithm

and methodology, and to serve as a testbed for evaluation of the

algorithm in radar system applications. The simulation can be

exercised with internally-generated sample multichannel output
data, or with externally-provided data. Extensive tests were

carried out to validate the code.

Simulation-based analyses carried out to date demonstrate the
feasibility of the SSC state space approach for multichannel
identification and detection in radar system applications. The

algorithm has demonstrated the capability to discriminate between

signal plus clutter plus noise and clutter plus noise in an
innovations-based detection algorithm formulation for the

multichannel detection problem. Several cases have been analyzed

at various SNR and CNR levels, and in all cases simulated thus far

discrimination has been demonstrated.

In the process of completing the work reported here several

areas have been identified for further research and development in

a Phase II of this program. These areas are summarized below.

Processor Requirements Definition

Determination of the true potential of the SSC approach for

radar system applications requires the establishment of a detailed
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set of requirements for various radar problems such as space/time

processing in a radar array system, the fusion of data from
multiple distinct r, iar systems, and the fusion of multiple radar
measurements (dual-polarization measurements, for example). Also,

detailed sets of requirements need to be defined for other
application areas such as hydrological systems, seismic event

detection, and medical technology.

Additional Analyses and Dptaiped Algorithm Formulation

The analyses listed below are required to generate a detailed

algorithm definition for the requirements, and to provide a
precise assessment of the SSC approach in the context of the

requirements.

" The innovations model matrix parameters F, r, and H can

be estimated using different equations. Some of the

alternative equations can exhibit bias errors, but may
be simpler to implement. These alternatives need to be

evaluated and traded.

" Model order selection criteria for on-line and off-line

decisions need to be evaluated and traded. This
includes the diagonal values {Si} of matrix SL, the

square of the {Si), and their normalized running sums.

"* The steady-state Kalman filter was used in this Phase I

to generate the innovations sequence. Alternatively,

the time-varying Kalman filter can be used. The loss
in performance, if any, incurred by using the steady-
state approximation needs to be evaluated. A related

issue is the duration of the transient effect in the

case of the steady-state filter.
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"* Key implementation parameters need to be established.
This includes the minimum required channel output

sequence duration, and the row dimension of the Hankel

output data matrix.

"• Identification and detection performance should be

compared with that of other methods. This includes

state space methods that operate on output correlation
matrix data, and methods based on AR models.

"* A detailed algorithmic approach to the implementation

of the QR decomposition and the QSVD needs to be
defined. In this context, a new decomposition for
rectangular matrices introduced by Stewart (1992)

should be reviewed for possible utilization in the SSC
approach. This decomposition is related to the QR
decomposition and to the SVD, and can be updated
recursively in a simple manner. The recursive feature

is attractive for reducing the computational load.

Once these technical issues are addressed, a detailed architecture

design can be defined.

Real-TimA Processor Architecture Design

A real-time implementation architecture for the algorithm
needs to be developed, and a candidate hardware implementation

should be identified. Specifically, the following issues should

be addressed.

* Generation of an architecture design that best meets
the features of the detailed algorithm design and the
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established processor requirements. The result may be

an architecture with features different from those in

existing processors, and which is likely to consist of

various fundamental architectures (systolic; vector;

parallel arrays; etc.).

Analysis of state-of-the-art processors to determine
which contemporary and next-generation VLSI components

best match the optimized architecture design and the

requirements.

In addressing these issues the emphasis should be on the most

computation-intensive tasks of the SSC multichannel algorithm

reported here.

PrncPmssr DevP1onment System DPsign

A processor development system should be designed and

installed to serve as a testbed for the development of detection

and identification methodologies and algorithms. The system

should be applicable for on-line laboratory experimentation and

for off-line processing of data collected using operational radar

systems. Availability of such a development system will speed up

significantly the algorithm development work at both SSC (during

Phase II) and RL (after delivery upon program conclusion) because

the generation of detection results require Monte Carlo analyses

and simulations.
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APPENDIX A. STATE SPACE REPRESENTATION OF TIMZ SERIES

MODELS

Consider a discrete-time, time-invariant, complex-valued,
zero-mean, random process {(.(n)) defined as the output of the

following state space system model

(A-la) y(n+l) = Fy(n) + Gu(n)

(A-lb) ý (n) a HH (n) + DH (n)

Vector recursive processes such as moving-average (MA), auto-

regressive (AR), and auto-regressive moving-average (ARMA)

processes can be modeled with state variable models (SVMs) of the

form (A-l). The discussion herein is limited to the particular

case where the matrix coefficients *of the recursion are square
matrices, and the number of output coefficients is equal to the

number of input coefficients. The generation of a minimal-order

SVM for a vector recursive process involves the properties of

polynomial matrix pairs and canonical forms for multiple input,
multiple output SVMs.

In contrast, minimal-order SVMs for scalar recursive

processes (MA, AR, ARMA) can be generated in a straightforward

manner given the recursion coefficients. The SVM generic form

appropriate for modeling scalar recursive processes is

(A-2a) y(n+l) - Fy(n) + Su(n)

(A-2b) x(n) = bH¥(n) + d*w(n)

This SVM is a single-input, single-output system.
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A.. I maa M. PreOa. Model

A scalar MA process of order M is defined as

M
x(n) -. b u(n-k)

k-0

x(n) = bou(n) + blu(n-1) + b2u(n-2) + •.. + bmu(n-M)

where {u(n)) is a zero-mean white noise sequence. This recursion
can be modeled with a state-space system of the form (A-2) with
input sequence (u(n)), and state vector with elements that are

determined by the input sequence,

y,(n) u(n-1)

y.(n) -yym.(n) u(n-IM+1) n

YL(n) u(n-M)

The output noise sequence is also equal to the input noise
sequence,

w(n) = u(n) Vn

which means that the input and output noise sequences in the state
space model are completely correlated. Model parameters (F, a, ht
d) are defined as

0 0 ......... 0 0
10 ...... 0 0
0 1 T.:o ."

. 0

O0 ...... 1 O0
O 0 ...... 0 1 0J
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[QU]

d- b

with 0 denoting a lxM vector defined by M of the MA recursion

coefficients,

JaHwhb b .. :

The special form of matrix F is one of the possible four

variations of the so-called companion matrix form. Also, the

system parameters, the quadruple (F, 2, 1, d), is a variation of

the so-called controllable canonical form. These forms have the
minimal number of non-zero elements (whereby the name "canonical")

of all possible SVMs that model the scalar MA process.

Note that the definition of the state vector y(n) in terms of
the sequence (u(n)) inherently defines the initial condition vector,

Y.(O). Once the initial condition vector is defined, the state

propagation, Equation (A-2a), provides for continued generation of

the output process.

Verification of the above-defined model proceeds as follows.

The form of matrix F provides for continued "scrolling" of the
input noise sequence as elements of y(n), for all n. Validation of

the model follows from (A-2b) and the definition of 11, w(n), and

y(n). That is,
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x(n) - hy.(n) + d*w(n)= I=Hy(n) + bou(n)

Expanding the term bHy(n), and substitution of the definition of y(n)

in terms of the sequence {u(n)) results in

x(n) - bou(n) + bVu(n-1) + b2u(n-2) + ... + bMu(n-M)

which is the MA process definition. Model validation can be

carried out also using the transfer function concept, as

summarized next.

Consider first the derivation of the transfer function from

the MA process definition. Since the MA process is a discrete-

time process, the appropriate tool for the determination of the
transfer function is the Z-transform. Application of the Z-

transform to the definition of the MA model results in the

expression

M
X(z)- bz'kU(z)

k-O

where Z denotes the transform variable, and X(z) and U(z) are the Z-

transforms of the sequences (x(n)} and {u(n)), respectively. The

transfer function for this linear system is then defined as

T(z) - a 1 b- Z
U(z) k.o

This corresponds to the transfer function of an all-zero system,

as is well known.

The transfer function for a single-input, single-output state
variable model (A-2) is of the form
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T(z) = H[zl- F]'l! + d*

The particular characteristics of matrix F and vector Q lead to a

very simple expression for the product [ZI-F]Y-I; namely,

[z - F]'lg 1 ft(z)y•z)

where y(Z) is the system characteristic polynomial (the determinant

of matrix [ZI-F]),

7z) - zM

and f(Z) is vector with elements of the form Oi(z)-zi'1; that is,

.T(z) "[ " ... Z2 Z 1

Substitution of these expressions and of •H and d* in the equation

for the transfer function leads to the following result

hfH f(z) + d y(Z) ]a H f(z) + bz * M H
-,,(z) ZM

(z)bo+b;z1• +b2Z + + bM Z. bkzk
k-O

This result is identical to the transfer function expression

derived from the definition of the MA process.

A.2 flr Przaaa& Modal

A scalar AR process of order M is defined as
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M
x(n) =- X. akx(n-k) + u(n)

k-I

x(n) = - ax(n-1) - 4x(n-2)- ...- a~Mx(n-M) + u(n)

where {u(n)k is a zero-mean white noise sequence. This recursion

can be modeled with a state-space system of the form (A-2) with
input sequence {u(n)), and state vector with elements that are

determined by the output sequence,

y,(n) x(n-1)

y.(n) nYMA(n) - x(n-M•+l) V n

L. y(n) J x(n-M) j

The output noise sequence is equal to the input noise sequence,

w(n) = u(n) Vn

This 'implies complete correlation between the input and output

noise sequences in the SVM (as in the case of the MA model)
Model parameters (F, g, 1,f d) are defined as
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a, -a 2  ... .. . a. 1  -aM

S.. 0 0

Fu

"'. ".. 0 0

0 0 1 0 0

0 0 o 0 1 0
F=[ "M.ll

W1. QM-I

IIH . aH

d 1

with fH denoting a vector with elements equal to the AR recursion

coefficients,

elui[a! g; ... M

The system parameters quadruple (F, t, li, d), is in controllable

canonical form, as in the MA model case.
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Note that the definition of the state vector y(n) in terms of

the sequence {x(n)} inherently defines the initial condition vector,

Y.(O). Once the initial condition vector is defined, the state

propagation, Equation (A-2a), provides for continued generation of

the output process.

Verification of the above-defined model proceeds as follows.

From (A-2a) and the definition of F, y(n), y(n+1), and Q, it follows

that

YM(n+ 1 ) -- ady,(n) - a2Y2 (n)- ... - amyM(n) + u(n)

yM(n+l) =-aH(n) + u(n)

Also, it follows from (A-2b) and the definition of h1, w(n), and y(n)

that

x(n) - hHy(n) + w(n) - eHy.(n) + u(n)

which indicates that x(n)-yM(n+1). Then, expanding the term -aHy(n)

and substitution of the definition of y(n) in terms of the sequence

(x(n)) results in

x(n) = - a!x(n-1) - aý2x(n-2) - .. ,-aMx(n-M) + u(n)

which is the AR process definition.

The transfer function approach can be used also to validate

this SVM for scalar AR processes. Application of the Z-transform

to the definition of the AR model results in the expression
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M
,Tkakz" X(Z) - U(Z)

k=O

where a0 - I is introduced for notational simplicity, and X(z) and

U(z) are the Z-transforms of the sequences {x(n)) and {u(n)),
respectively. The transfer function for this linear system is

then defined as

T(z ) = 1

u~z a;,z'

k-O

This corresponds to the transfer function of an all-pole system,

as is well known.

Consider now the transfer function for the state variable
model (A-2) . In the present AR process case, the system

characteristic polynomial is

JZ) zM + azM +...+aM.lz +aM

and the particular characteristics of matrix F and vector g lead

the same simple expression for the product [zI-F]'1; namely,

[zl. -F"2 = _1_ (z)

where j(z) is as defined previously. Notice that the

characteristic polynomial can be expressed as

"AZ) - ZM + aH (z)

Substitution of these expressions and of 1H and d* in the equation

for the transfer function leads to the following result
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T(Z)I H h(z) + d y(z) A +H(z)+z) l M

T(z) a 1 = 1zM (z) 7()Y

k-O

This is identical to the transfer function expression de:;ived from
the definition of the AR process.

A.3 R~alar R Pro~ass Modal

A scalar ARMA process of order M is defined as

M M
x(n) 7-M asx(n-k) + 7, b~u(n-k)

kal kO

x(n) d- ax(n-1) - ...- aM.x(n-M+1) - aMx(n-M) + bou(n) ÷. bu(n-1) +

+ beu(n-2) + . .. +býu(n-M)

where (u(n)) is a zero-mean white noise sequence. This recursion

can be modeled with a state-space system of the form (2) with
input sequence {u(n)), and output noise sequence equal to the input

sequence,

w(n) a u(n) V n

This implies complete correlation between the input and output
noise sequences in the SVM (as in the case of the MA and the AR
models). Model parameters (F, g, ja, d) are defined as
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-a ... .. .. .aM. 1  -aM

10 .. .. 0 0

Fa

o 0

0 0 1 0 0

o 0 0 1 0

FK

--thH =tH- býAH

d', bo

Here, as in the AR case, vector &H has elements equal to the AR

recursion coefficients,

e -[a a* ...

and vector bH has elements defined by M of the MA recursion

coefficients,
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The system parameters quadruple (F, g, i, d), is in controllable

canonical form, as in the MA and AR model cases.

State vector initial conditions, y.(O), for this case are

related to the input and output sequences in a more complex

manner, and have to be selected appropriately. Once the initial

condition vector is defined, the state propagation, Equation (A-
2a), provides for continued generation of the output process.

The simplest approach to validate this model is via the
transfer function approach. Application of the Z-transform to the

definition of the ARMA model results in the expression

M M
I Akz"X(Z) = X bkZkU(Z)
k-O k-O

where, as before, X(z) and U(z) are the Z-transforms of the
sequences (x(n)) and {u(n)), respectively, and a0 -1 is introduced for

notational simplicity. The transfer function for this linear

system is then defined as

M M

T(z) - Xz k.O =k.O
U(z) M * Zk M -

kmO k-0

where the two polynomial ratio expressions (corresponding to
inverse powers of Z or direct powers of Z) are equivalent, as

indicated. This is a transfer function with both poles and zeros,

as expected for an ARMA process.
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Consider now the transfer function for the state variable

model (A-2) . For an ARMA process the system characteristic

polynomial is

which is equal to that for an AR process SVM model. As in the

other two cases,

[zl - Fj"g = __ (z)
y(z)

given the particular features of matrix F and vector g (f(Z) is as

defined previously). Notice also that, as in the AR process case,

the characteristic polynomial can be expressed as

YZ)" ZM + aH (z)

Substitution of these expressions and of tH and d* in the equation

for the transfer function leads to the following result

H HT'(z) -, h e(z) + d y(z) (bH- b*AH) J(z) + b;,ylz) - bZM P + til(z)""(z) Y(z) 'Y(z)

It is easy to verify that this result is identical to the transfer
function expression derived from the definition of the ARMA

process. That is,

M

T(z) bpzi + 1H (z) k-O
"•z)I azMk

k-0
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where 0= 1, as before.

A. 4 Ma4da3la o Vfoox ROeUrsiEL ProSeAIMa

Vector recursive processes of the MA, AR, and ARMA type can

be represented with SVMs of the type given herein. For vector

recursive processes the appropriate notation is:

*H +H .H HMA I(n)a Bou(n), B, u(n-1) + B2u(n-2), ... + B&(n-M)

AR I(n) - A, x(n-1) - A2x(n-2)- ...- Aa(n-M) + IL(n)

AP14A xj(n) Ax(n-1) - ... AM.lx(n-M+1) - AM,(n-M) + Bou(n) + Bu(n-1) +

1aHu(n-2) + H+ aH(n-M)

where each of the coefficient matrices is dimensioned JxJ. Also

analogous to the scalar case, the corresponding transfer function
matrices can be defined using the Z-transform; which leads to

Tt(z) - B(z)

TAR(z) - A' (z)

TARIMA(Z) = A" (z) B(z)

where A(z) and B(z) are the following matrix polynomials in Z,

M
A(z). T Ak Z k

k-O

M H -
B(z)- I B~z~k

kno
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with A0 the JxJ identity matrix. The matrix pair (A(z), B(z))
(including the cases with either A(Z)nI or B(z)-I) corresponding to
a linear discrete-time system is referred to as a matrix
polynomial representation or a matrix fraction description (MFD)
for the system.

Departing from the time-domain definition for the vector
recursive processes, the SVM for each of the three processes is of
the same form as the corresponding scalar case SVM, with the
following changes: a JxJ coefficient matrix in place of the
corresponding coefficient scalar, a JxJ identity matrix (1j) in
place of each unit scalar, and a JxJ null matrix (Oj) in place of

each zero-valued scalar. Specifically, the SVM for the ARMA
vector process is:

IJ Oj OJ Oj

Oj IJ

F= 5,

',, ', Oj Oj

Oj Oj iJ Oj Oj

Oj Oj Oj Ij Oj
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- Ij

H H. M B H .A HBH B .A H H .. B" AHB H

DH H

-DA2Bo

The SVM for the other vector processes (MA; AR) is obtained by
substituting the correct values for the vector process
coefficients in the above system parameters (that is, AI-OJ for an

MA process; and BOwIj and BI-Oj, i>1 for an AR process). In all

cases, the transfer function matrix is obtained from the SVM
representation as

T(z)I= HH[ZI - F]-'G + DH

A transfer function calculated according to this relation is

equivalent to the transfer function calculated from the

appropriate polynomial matrices.

The order (dimension of the state vector) of the resulting
SVM for each of the three vector processes is N = MJ, since for
each process the system matrix F consists of M block rows and M
block columns, where each block in each row and column is a JxJ

matrix. SVM order is important for practical and computational

considerations. An SVM representation is of minimal order if no

other SVM representation of lower order leads to the same transfer
function matrix. In terms of the system parameters (F, G, H, D),

the order of the SVM representation is determined by the rank of
the controllability matrix or the rank of the observability

matrix, whichever is smaller. Given the form of the matrix pair
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(F,G) for all three cases, it is easy to verify that the

controllability matrix has full rank for all three cases.
However, the observability matrix has a simple form only for the
MA SVM. The special form of the observability matrix for the MA
case considered herein (with BM a square matrix) indicates by

inspection that the rank of the observability matrix is equal to
MJ if and only if matrix BM has full rank. Such a simple result

is not available for the AR and the ARMA SVMs. Determination of
the conditions on the coefficients of the polynomial matrices A(z)
and B(z) for AR and ARMA vector processes that lead to an SVM

representation of minimal order is a difficult problem. This is
due to the fact that both AR and the ARMA vector processes lead to
a transfer function matrix with elements which are, in general, a
ratio of polynomlalsin Z.

Model order and related issues for matrix polynomial
representations have been discussed by several researchers. The
results summarized next are available in the text by Rosenbrock

(1970). Consider the matrix polynomial representation of a
system, and assume that the determinant of A(z) is different from

zero to eliminate pathological cases. For an AR vector process,
the order of the system is given by the degree of the determinant
of A(z). Thus, the SVM representation presented herein for vector
AR processes is of minimal order if the determinant of A(z) (with
A0 -1j) has degree equal to MJ.

Several definitions need to be introduced prior to stating

the relevant results regarding minimal order for ARMA vector
processes. A square polynomial matrix is said to be r when

the matrix coefficient of the highest power of Z is non-singular.

The determinant of a regular polynomial matrix has maximum

possible degree. A square polynomial matrix is said to be
AimQdilx. if its determinant is a non-zero constant. Unimodular
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polynomial matrices have an inverse which is also a polynomial

matrix. As an example, the polynomial matrix

Q(z)=Q 0 +Q0 z + l[ 1+z"' ]
2 + z "1 4 + -z "1

is unimodular because the determinant of Q(z) is equal to -2.

Notice that the inverse of Q(z) is also a polynomial matrix,

0" (Z 4 +.'I -(3 ,+Z-
[.(2 + z") 1+z

as expected. Notice also that Q(z) is not a regular matrix since

Q0 is singular.

Two polynomial matrices A(Z) and B(Z) are said to have a common
left divisor S(Z) if

A(z) - S(z)PA(Z)

B(z) - S(z)PB(z)

where S(Z), PA(z), and PB(z) are polynomial matrices. Finally, if

all the common (left) divisors of two polynomial matrices A(z) and

B(z) are unimodular, then the two matrices are said ro be
relatively (left) prime. That is, if A(z) and B(z) are relatively

(left) prime, then the determinant of the polynomial matrix S(z) in

the above factorizations is a constant. This implies that the
degree of the determinant of PA(Z) is equal to the degree of the

determinant of A(z), and the degree of the determinant of PB(Z) is
equal to the degree of the determinant of B(Z). Furthermore, the
determinant of PA(Z) has no polynomial factors in common with the

determinant of PS(Z). A matrix polynomial pair (A(z), B(z)) with A(z)

104



and B(z) relatively (left) prime is an irreducihle matrix

polynomial representation for the system.

The relevant results for ARMA vector processes can be stated
now. As in the AR case, for an ARMA vector process the
determinant of A(Z) (with A0 = Ij) must have degree equal to MJ for

the SVM representation presented herein to be of minimal order.

However, two additional conditions must be satisfied. Namely,
matrix BM must have full rank, and the polynomial matrices A(z) and
B(Z) must be relatively (left) prime. Full rank for matrix BM

implies that B(z) is a regular polynomial matrix. If A(z) and B(z)

are not relatively prime, then the order of the system is reduced

by the degree of the determinant of the greatest common (left)
divisor of A(z) and B(z). This is related to the so-called

pole/zero cancelations.
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APPENDIX B. QUOTIENT SINGULAR VALUE DECOMPOSITION

The quotient singular value decomposition (QSVD) is a

generalization of the SVD for a matrix to the case of two general
matrices with the same number of columns. As such, it is also
referred to as the generalized SVD. This concept was developed by
Van Loan (1976), who called it the BSVD. Paige and Saunders

(1981) modified the concept and extended its applicability to
general matrices. Their concept is summarized herein in the
context of the multichannel detection application. From a
computational viewpoint, the approach suggested by Van Overschee
and De Moor (1993) is adopted. Two distinct cases are considered

herein, corresponding to the two conditions that arise in the
implementation of the identification algorithm (Section 3.1).

B.1 O9VD for the Matrices of Ecuations (3-221 and (3-23-

Consider the J(L-I)xJ(L+I) matrix RD, and the J(L-1)xJ(L-1) matrix

RE defined in Equations (3-22) and (3-23), respectively. It is

desired to determine the QSVD of the matrix pair consisting of the
conjugate transpose of these two matrices. The procedure is

described below.

The first step is to define a 2JLxJ(L-1) matrix A as the
following concatenation of the conjugate transposes of matrices RD

and RE:

H
(B-1) A ....

RE

Now carry out an SVD on matrix A to get (recall that A has more

rows than columns),
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SA [USlA [0]
(B-2a) A = UA [0 H UIA U3A 1i [01 [0] H

U2A UA UM (0] [0]

(B-2b) SA=[S1A [0]A 1
SI [01 [101

In this decomposition the unitary matrix UA is J(L+1)xJ(L+1), matrix

SA is J(L-1)xJ(L-1), and the unitary matrix VA is J(L-1)xJ(L-1). Matrix

SA is diagonal, with real-valued non-negative elements along the

diagonal arranged in decreasing order of magnitude (the largest-
valued element occupies the (1, 1) position). The diagonal
elements of matrix SA are the singular values of matrix A. The

rank of matrix A, denoted herein as KA = rank(A), is equal to the

number of non-zero singular values. These non-zero singular
values are the diagonal elements of the KAxKA matrix S1A. If

matrix A is full-rank, then SIA becomes SA. In most cases

involving random processes the singular values of A will be non-

zero, although there may be a large dynamic range between the

largest and the smallest singular values. Alternatively, the

singular values may appear in groups, with a significant variation

in dynamic range between the groups of singular values. Such
situations are indicative of an effective rank KA < J(L-1).

The row partition of matrix UA into submatrices is the same

as the row partition in the concatenation (B-1), and the column
partitioning of UA corresponds to the row partitioning of matrix

SA. That is, matrix UlA is J(L+1)xKA and matrix U2A is J(L-1)xKA.

With this partitioning, Equation (B-2a) is equivalent to the

following expression,
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(B-3) A0 10 ,H - 1 I I 
V H

u 1[0] JL [0] [0] 1 A U2A [o] JjL [o] IM VA

where M-J(L-1)-KA. This expression is obtained by first cutting

off the last block column of matrix UA and the corresponding block

row of matrix SA. Next, U3A and U4A are replaced with zeros, which

allows placing an identity matrix of dimensions M-J(L-I)-KA into

the lower right-hand-corner of matrix SA. None of these

modifications alters the numerical value of the expression.

The next step in the computation of the QSVD is to carry out
an SVD on each of the matrices UlA and U2A. The resulting SVDs can

be expressed as

(B-4) U1A - UL. 1 SL. 1 VH1A

(B-5) U2A.-= VL.1 T. 1 vH

In the first decomposition, UL.1 is a J(L+1)xJ(L+1) unitary matrix,

SL.A is J(L+I)xKA, and VUlA is a KAxKA unitary matrix. Matrix SL.1 is

zero except for real-valued, non-negative elements along the main
diagonal. The non-negative elements of SL.l are arranged in

decreasing order of magnitude, with the largest-valued element

occupying the (1,1) position and having value less than or equal
to unity. In the second decomposition, VL. 1 is a J(L-1)xJ(L.-1)

unitary matrix, TL.A is J(L-1)xKA, and VU2A is a KAXKA unitary

matrix. Matrix TL.I is zero except for real-valued, non-negative

elements along the main diagonal. The non-negative elements of TL.

are arranged in increasing order of magnitude, with the smallest-
valued element occupying the (1,1) position and having value
greater than or equal to zero. The largest-valued element of TL.A

is the (KAKA)th element, and its value is less than or equal to
unity. Notice that the arrangement of the elements of TL.A along
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the main diagonal is the reverse of the conventional SVD. This

deviation, however, is essential to the Paige and Saunders (1981)
definition of the QSVD. Let {SIji - 1, 2, ... , KA} denote the main

diagonal elements of SL.I, and let (till-I1, 2, ... , KA)} denote the main

diagonal elements of TL.-. The above-stated conditions on these

elements are summarized as:

(B-6) 1 >-S1 >S2k ... 2! SKA a 0

(B-7) 0 :5 tI St2<5,...<5tKA <51

Paige and Saunders (1981) hate shown also that these elements

satisfy the following constraint,

(B-8) SI+t- 1 i =1,2, KA

This constraint is valid only if the singular values satisfy (B-6)
and (B-7). The pairs of values (Si, ti) are called the sinaular value

p of matrices RD and RE.

Based on Equations (B-6) and (B-7) and on the orthogonality
property of matrix UA it is possible to show that

(B-9) VU1A a VU2A = VUA

Then, substituting this result into Equations (B-4) and (B-5), and

in turn substituting these into Equation (B-3) leads to

(B-10) A. FUL.1SL.1 [0] i[VUA [0 1[ S1A [0] H

VL.1TL.1 [0] [0] IM [0] IM

Now define a J(L-I)xJ(L-1) matrix YL-1 as

109



YH * VUA [0] i Sl1A (01] 1 H
L- [01 IM [01 IM

Substitute for YL-1 in Equation (B-10) and re-arrange the

submatrices of the first matrix to obtain

(B-12) A -[ UL'I[ SL'I OJ(L+I),M ] ] L1

VL.. [TL.1 OJ(L.1),M ] "

The desired QSVD for the matrix pair RD and RE follows directly by

a comparison of Equations (B-i) and (B-12),

(B-13) Rl - UL..L-[ . OJ(L+I),MIYL-1
Ii (B-14) R•E = VLOITLAI OJ(L'I)'M]yL-1I"

If matrix A has full rank these expressions simplify to

(B-15) yH
UL.1SL..1YL.1

H y(B-16) RE - VL. TL.I.{

As mentioned earlier, in most cases involving random processes

matrix A will be full rank. Even if such is not the case, it

appears to be better to over-estimate the rank of A rather than to

under-estimate it. In fact, if the rank of matrix A is under-

estimated, then the true structure of matrices SL.I and TL.l is

distorted. With over-estimation of the rank of A it is still

possible to determine the true model order accurately, but under-

estimation of the rank of A effectively places an upper bound on

the attainable model order and this bound could be less than the

true model order (see Section 3.2).
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Consider matrix SL.1 for the general case, where rank(A)-KA<

J(L-1). The structure of this matrix is determined by the true

order of a state space representation of the process being
modeled. Specifically, for the case where the model order is N <
KA, matrix SL.1 is of the form

(1) [01 [.( [0]L-1 VL-1 ]

(B-17) SW pi [0] 2 0 [0

L o [0 0 L[0] [0]1

S(2)

Here is an NxN diagonal matrix, and SL- is a (KA-N)x(KA-N)

matrix with possible non-zero elements only along the main

diagonal. As inferred by Equation (B-17), S(2) is a null matrixL-1
when the model order N < KA. In practical situations where

e,(2)
randomness is present, the diagonal elements of matrix S(2) are not

L-1

equal to zero, but they are significantly smaller than the

diagonal eleients of S(1)

B.2 OSVD for tho Matrices of Eauationa (3-201 and (3-211

Consider the JLxJL matrix RB, and the JLxJL matrix RC defined

in Equations (3-20) and (3-21), respectively. It is desired to

determine the QSVD of the matrix pair consisting of the conjugate

transpose of these two matrices. Since the approach is analogous

to the preceding section, only the key steps and definitions are

given below.

As before, define a 2JLxJL matrix B as the following
concatenation of the conjugate transposes of matrices RB and RC:
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RH

(B-18) B ...

Now carry out an SVD on matrix B to get (recall that B has more

rows than columns),

(B-19a) B U U8 SB1 U3B US 6  to, [0][ 01 ] V.1 [ U4B U66  [0B0

F S1 6 0[0101
(B-19b) Se =SIB 0[

I (01 [0]

In this decomposition the unitary matrix U8 is 2JLx2JL, matrix SB
is 2JLxJL, and the unitary matrix VB is JLxJL. Matrix SB is

diagonal, with real-valued non-negative elements along the

diagonal arranged in decreasing order of magnitude (the largest-
valued element occupies the (1,1) position). The diagonal
elements of matrix S8 are the singular values of matrix B, and the

rank of matrix B, denoted herein as KB = rank(B), is equal to the

number of non-zero singular values. These non-zero singular
values are the diagonal elements of the KBXKB matrix S1B. If

matrix B is full-rank, then S1B becomes SB. Analogous to the

prior case, for random processes the effective rank of matrix B is
Ka < JL.

As before, Equation (B-19a) can be converted to the following

equivalent form,

(B-20) B [UIB (01][ 91B [0] ] H [U16 [0] iSIB [0] ] Hv
u [0 [o01 u2  [0]Ol0 [01 IM
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(B-20) B [ U1 B [0] i[SlB [0] V H Ul1B[0] SI [0] 1 VH
U28  [0] [0] [0 ] V0 1 U23 [0] JL [0] IM I

where MaJL-KB. The SVD of the JLxKs matrix UIB and the SVD of the

JLxK8 matrix U28 are expressed as

(B-21) -H
UiB = ULSLVUIB

(B-22) U28 - VLTLVH2B

In the first decomposition, UL is a JLxJL unitary matrix, SL is

JLxKB, and VUIB is a KBXKB unitary matrix. Matrix SL is zero

except for real-valued, non-negative elements along the main
diagonal. The non-negative elements of SL are arranged in

decreasing order of magnitude, with the largest-valued element

occupying the (1,1) position and having value less than or equal
to unity. I-n the second decomposition, VL is a JLxJL unitary
matrix, TL is JLxKB, and VU2 8 is a KBXKB unitary matrix. Matrix TL

is zero except for real-valued, non-negative elements along the
main diagonal. The non-negative elements of TL are arranged in

increasing order of magnitude, with the smallest-valued element

occupying the (1,1) position and having value greater than or
equal to zero. The largest-valued element of TL is the (KBKB)th

element, and its value is less than or equal to unity. As in the
prior case, the arrangement of the elements of TL along the main

diagonal is essential to this definition of the QSVD. The non-
zero elements of SL and TL are the singular value pairs of matrices
RB and RC, and they satisfy conditions identical to (B-6) through

(B-8) with KA replaced by KB.

Given the conditions satisfied by the singular value pairs
and given the orthogonality property of matrix U8 it is possible

to show that
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(B-23) VU1B 6 VU2B = VUB

Then, substituting this result into Equations (B-21) and (B-22),

and in turn substituting these into Equation (B-20) leads to

(B-24) B[ULSL (0] i VUB [0] iSIB [0]1 vH

VLTL [01 1 [01 IM [01 'M

Now define a JLxJL matrix YL as

(B-2) YH [ VU13 [0] S16 [0]1 V H
[1 l 0 IM 11 [0] IMI

Substitute for YL in Equation (B-24) and re-arrange the submatrices

of the first matrix to obtain
UL[SL OJLM]

(B-26) B VL[T IJLM

The desired QSVD for the matrix pair RB and RC follows directly by

a comparison of Equations (B-18) and (B-26),

(B-27) J- UL[SL OJLM]Y

(B-28) R- = VL[TL OJLM]YHL

If matrix B has full rank, as can be expected in most cases where

the processes are random, these expressions simplify to

(B-29) - ULSLYH
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The comments made earlieo, regA•=nll LhO r•nk ofr matuix A ippjly

equally to the rank of matrix B, in pitcuiAr, tit I'A h't1.v It,

over-estimate the rank of B rather than to under-watimate it,

Consider matrix SL for the cases where rank(B).KmiJL, The

structure of this matrix is determined by the true order at a

state space representation of the process being modeled, in ract,

model order can be determined by examining the diagonal e*ements

of SL (see Section 3.2), Model order can be determined also from

the diagonal elements of matrix SLO,, However, it is preferable to

use matrix SL for model order determination because thi,, matrix ii

generated by the QSVD of two matr.ces with JL rows, -a 5vD is

more robust numerically than the QSVn for SLI, which is a QSVD for

two matrices with J(L-1) rows. For the cases where tho modeL order

is N<KB, matrix SL is of the form

L L (](-1 SL (0) S[ (0] [o0]

[01 [0] [01 [0]

Here S•1) is an NxN diagonal matrix, and S(2) is a (K-N)x(K-N)

matrix with possible non-zero elements only along the main

diagonal. As inferred by Equation (B-31), S(2) is a null matrix

when the model order N < K1. When random processes are being

modeled the diagonal elements of matrix SL2) are not equal to zero,

but their magnitude is smaller than the diagonal elements of S(1)

In such cases the relative numerical value of the elements along

the main diagonal of SL determines the cut-off point, and

consequently, the model order (Section 3.2).
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